Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases

In mammals, complex I (NADH‐ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein components, as well as of biogenesis factors, makes complex I a sensible pace‐maker of mitochondrial respiration. The work reviewed here shows that the cAMP/PKA pathway regulates the biogenesis, assembly and catalytic activity of complex I and mitochondrial oxygen superoxide production. The structural, functional and regulatory complexity of complex I, renders it particularly vulnerable to genetic and sporadic pathological factors. Complex I dysfunction has, indeed, been found, to be associated with several human diseases. Knowledge of the pathogenetic mechanisms of these diseases can help to develop new therapeutic strategies.

[1]  B. Gibson,et al.  Mass spectrometric identification of a novel phosphorylation site in subunit NDUFA10 of bovine mitochondrial complex I , 2005, FEBS letters.

[2]  K. Wertz,et al.  Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes. , 2010, The Journal of nutritional biochemistry.

[3]  Abel Lajtha,et al.  Handbook of Neurochemistry and Molecular Neurobiology , 2007 .

[4]  J. Hayashi,et al.  ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis , 2008, Science.

[5]  J. Hirst Towards the molecular mechanism of respiratory complex I. , 2010, The Biochemical journal.

[6]  G. Shulman,et al.  AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  W. Neupert,et al.  The protein import motor of mitochondria , 2002, Nature Reviews Molecular Cell Biology.

[8]  J. Scott,et al.  Compartmentalisation of phosphodiesterases and protein kinase A: opposites attract , 2005, FEBS letters.

[9]  G. Rotilio,et al.  Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. , 2010, The Journal of biological chemistry.

[10]  V. Petruzzella,et al.  Pathological Mutations of the Human NDUFS4 Gene of the 18-kDa (AQDQ) Subunit of Complex I Affect the Expression of the Protein and the Assembly and Function of the Complex* , 2003, Journal of Biological Chemistry.

[11]  R. Wiesner,et al.  CREB-1α Is Recruited to and Mediates Upregulation of the Cytochrome c Promoter during Enhanced Mitochondrial Biogenesis Accompanying Skeletal Muscle Differentiation , 2008, Molecular and Cellular Biology.

[12]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.

[13]  S. Papa,et al.  Characterization of proteins phosphorylated by the cAMP‐dependent protein kinase of bovine heart mitochondria , 1995, FEBS letters.

[14]  John D. Scott,et al.  AKAP signalling complexes: focal points in space and time , 2004, Nature Reviews Molecular Cell Biology.

[15]  Tullio Pozzan,et al.  Discrete Microdomains with High Concentration of cAMP in Stimulated Rat Neonatal Cardiac Myocytes , 2002, Science.

[16]  J. Walker,et al.  The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains , 1992, Quarterly Reviews of Biophysics.

[17]  Susan S. Taylor,et al.  cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. , 1990, Annual review of biochemistry.

[18]  E. Bertini,et al.  Pathogenetic mechanisms in hereditary dysfunctions of complex I of the respiratory chain in neurological diseases. , 2009, Biochimica et biophysica acta.

[19]  Richard G. Jenner,et al.  Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Scarpulla,et al.  cAMP-dependent Phosphorylation of the Nuclear Encoded 18-kDa (IP) Subunit of Respiratory Complex I and Activation of the Complex in Serum-starved Mouse Fibroblast Cultures* , 2000, The Journal of Biological Chemistry.

[21]  M. Lazarou,et al.  Analysis of the Assembly Profiles for Mitochondrial- and Nuclear-DNA-Encoded Subunits into Complex I , 2007, Molecular and Cellular Biology.

[22]  J. Zierath,et al.  Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. , 2009, Cell metabolism.

[23]  A. Signorile,et al.  Serine (threonine) phosphatase(s) acting on cAMP‐dependent phosphoproteins in mammalian mitochondria , 2002, FEBS letters.

[24]  G. Lenaz,et al.  Generation of Reactive Oxygen Species by Mitochondrial Complex I: Implications in Neurodegeneration , 2008, Neurochemical Research.

[25]  Rouslan G. Efremov,et al.  The architecture of respiratory complex I , 2010, Nature.

[26]  P. Bénit,et al.  Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt −1) in the NDUFS4 gene in Leigh syndrome , 2003, Human Genetics.

[27]  G. Wilson,et al.  Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. , 2010, American journal of physiology. Endocrinology and metabolism.

[28]  B. Robinson Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. , 1998, Biochimica et biophysica acta.

[29]  S. Papa Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. , 1996, Biochimica et biophysica acta.

[30]  S. Dimauro,et al.  Mitochondrial DNA Mutations and Pathogenesis , 1997, Journal of bioenergetics and biomembranes.

[31]  S. Papa,et al.  Topology of the mitochondrial cAMP‐dependent protein kinase and its substrates , 1996, FEBS letters.

[32]  J. Hirst,et al.  The nuclear encoded subunits of complex I from bovine heart mitochondria. , 2003, Biochimica et biophysica acta.

[33]  I. Silver,et al.  ATP and Brain Function , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[34]  V. Petruzzella,et al.  Mutations in human nuclear genes encoding for subunits of mitochondrial respiratory complex I: the NDUFS4 gene. , 2002, Gene.

[35]  Joseph A. Frezzo,et al.  A novel mutation in NDUFS4 causes Leigh syndrome in an Ashkenazi Jewish family , 2008, Journal of Inherited Metabolic Disease.

[36]  L. Samavati,et al.  Regulation of mitochondrial oxidative phosphorylation through cell signaling. , 2007, Biochimica et biophysica acta.

[37]  John E. Walker,et al.  Definition of the Nuclear Encoded Protein Composition of Bovine Heart Mitochondrial Complex I , 2002, The Journal of Biological Chemistry.

[38]  I. Weissman,et al.  Genes encoding tumor necrosis factor alpha and granzyme A are expressed during development of autoimmune diabetes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Zeviani,et al.  Clinical and molecular findings in children with complex I deficiency. , 2004, Biochimica et biophysica acta.

[40]  J. Trapani,et al.  The role of perforin and granzymes in diabetes , 2010, Cell Death and Differentiation.

[41]  S. Papa,et al.  Mitochondrial respiratory dysfunction and mutations in mitochondrial DNA in PINK1 familial Parkinsonism , 2009, Journal of bioenergetics and biomembranes.

[42]  T. Ohnishi,et al.  Iron-sulfur clusters/semiquinones in complex I. , 1998, Biochimica et biophysica acta.

[43]  E. Avvedimento,et al.  The biological functions of A-kinase anchor proteins. , 2001, Journal of molecular biology.

[44]  E. C. Slater,et al.  Oxidative phosphorylation and photophosphorylation. , 1977, Annual review of biochemistry.

[45]  A. Signorile,et al.  Cyclic adenosine monophosphate-dependent phosphorylation of mammalian mitochondrial proteins: enzyme and substrate characterization and functional role. , 2001, Biochemistry.

[46]  C. Rubin,et al.  Organelle-specific Targeting of Protein Kinase AII (PKAII) , 1997, The Journal of Biological Chemistry.

[47]  Shiwei Song,et al.  A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis , 2008, Proceedings of the National Academy of Sciences.

[48]  S. Carr,et al.  A Mitochondrial Protein Compendium Elucidates Complex I Disease Biology , 2008, Cell.

[49]  V. Tiranti,et al.  Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. , 2009, Biochimica et biophysica acta.

[50]  R. Scarpulla,et al.  Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. , 2004, Genes & development.

[51]  A. Munnich,et al.  Molecular diagnostics of mitochondrial disorders. , 2004, Biochimica et biophysica acta.

[52]  A. Signorile,et al.  Occurrence of A‐kinase anchor protein and associated cAMP‐dependent protein kinase in the inner compartment of mammalian mitochondria , 2006, FEBS letters.

[53]  Christoph Handschin,et al.  Metabolic control through the PGC-1 family of transcription coactivators. , 2005, Cell metabolism.

[54]  N. Yadava,et al.  Molecular genetics of complex I-deficient Chinese hamster cell lines. , 2004, Biochimica et biophysica acta.

[55]  A. Verdanis Protein kinase activity at the inner membrane of mammalian mitochondria. , 1977, The Journal of biological chemistry.

[56]  L. V. D. Heuvel,et al.  Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. , 2000, Biochemical and biophysical research communications.

[57]  E. Mariman,et al.  Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. , 1998, American journal of human genetics.

[58]  S. Papa,et al.  Phosphorylation of B14.5a Subunit from Bovine Heart Complex I Identified by Titanium Dioxide Selective Enrichment and Shotgun Proteomics*S , 2007, Molecular & Cellular Proteomics.

[59]  John E. Walker,et al.  Bovine Complex I Is a Complex of 45 Different Subunits* , 2006, Journal of Biological Chemistry.

[60]  J. Lieberman Granzyme A activates another way to die , 2010, Immunological reviews.

[61]  Domenico de Rasmo,et al.  cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. , 2008, Cellular signalling.

[62]  R. Scarpulla Transcriptional paradigms in mammalian mitochondrial biogenesis and function. , 2008, Physiological reviews.

[63]  M. L. Genova,et al.  Control of oxidative phosphorylation by Complex I in rat liver mitochondria: implications for aging. , 2002, Biochimica et biophysica acta.

[64]  P. Puigserver,et al.  Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC‐1α , 2007, The EMBO journal.

[65]  A. Signorile,et al.  cAMP controls oxygen metabolism in mammalian cells , 2006, FEBS letters.

[66]  N. Yadava,et al.  Investigations of the potential effects of phosphorylation of the MWFE and ESSS subunits on complex I activity and assembly. , 2008, The international journal of biochemistry & cell biology.

[67]  Ια,et al.  Energy Converting NADH : Quinone Oxidoreductase ( Complex I ) , 2012 .

[68]  N. Yadava,et al.  The role of the ESSS protein in the assembly of a functional and stable mammalian mitochondrial complex I (NADH-ubiquinone oxidoreductase). , 2004, European journal of biochemistry.

[69]  Domenico de Rasmo,et al.  The β-adrenoceptor agonist isoproterenol promotes the activity of respiratory chain complex I and lowers cellular reactive oxygen species in fibroblasts and heart myoblasts. , 2011, European journal of pharmacology.

[70]  M. Runswick,et al.  GRIM-19, a Cell Death Regulatory Gene Product, Is a Subunit of Bovine Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I)* , 2001, The Journal of Biological Chemistry.

[71]  L. Alberghina,et al.  Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. , 2010, Biochimica et biophysica acta.

[72]  V. Pesce,et al.  Aging and mitochondria. , 1998, Biochimie.

[73]  A. Chatterjee,et al.  Mitochondrial DNA mutations in human cancer , 2006, Oncogene.

[74]  E. Shoubridge,et al.  Identification and Characterization of a Common Set of Complex I Assembly Intermediates in Mitochondria from Patients with Complex I Deficiency* , 2003, Journal of Biological Chemistry.

[75]  S. Papa,et al.  cAMP‐dependent protein phosphorylation in mitochondria of bovine heart , 1994, FEBS letters.

[76]  R. Lill,et al.  Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. , 2008, Annual review of biochemistry.

[77]  V. Petruzzella,et al.  1.5 Electron Transport. Structure, Redox-Coupled Protonmotive Activity, and Pathological Disorders of Respiratory Chain Complexes , 2007 .

[78]  M. Cann,et al.  Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Domenico de Rasmo,et al.  cAMP response element‐binding protein (CREB) is imported into mitochondria and promotes protein synthesis , 2009, The FEBS journal.

[80]  M. Ryan,et al.  Assembly factors of human mitochondrial complex I and their defects in disease , 2010, IUBMB life.

[81]  S. Papa,et al.  The nuclear‐encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP‐dependent protein kinase , 1996, FEBS letters.

[82]  A. Vinogradov,et al.  Generation of superoxide by the mitochondrial Complex I. , 2006, Biochimica et biophysica acta.

[83]  Marc Montminy,et al.  Transcriptional regulation by the phosphorylation-dependent factor CREB , 2001, Nature Reviews Molecular Cell Biology.

[84]  M. Cann,et al.  Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. , 2000, Science.

[85]  Cindy E J Dieteren,et al.  Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. , 2010, Antioxidants & redox signaling.

[86]  I. Izquierdo,et al.  Cyclic AMP‐Responsive Element Binding Protein in Brain Mitochondria , 1999, Journal of neurochemistry.

[87]  L. Levin,et al.  Compartmentalization of bicarbonate‐sensitive adenylyl cyclase in distinct signaling microdomains , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[88]  S. Dimauro,et al.  The genetics and pathology of oxidative phosphorylation , 2001, Nature Reviews Genetics.

[89]  A. Munnich,et al.  The regulation of PTC containing transcripts of the human NDUFS4 gene of complex I of respiratory chain and the impact of pathological mutations. , 2008, Biochimie.

[90]  P. Puigserver,et al.  Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α , 2006, Cell.

[91]  V. Petruzzella,et al.  Mutations in the NDUFS4 gene of mitochondrial complex I alter stability of the splice variants , 2005, FEBS letters.

[92]  P. Shapiro,et al.  Identification of GRIM-19, a Novel Cell Death-regulatory Gene Induced by the Interferon-β and Retinoic Acid Combination, Using a Genetic Approach* , 2000, The Journal of Biological Chemistry.

[93]  J. Beavo,et al.  Cyclic nucleotide research — still expanding after half a century , 2002, Nature Reviews Molecular Cell Biology.

[94]  C. Gustafsson,et al.  Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA , 2002, Nature Genetics.

[95]  J. Yates,et al.  The CREB Coactivator TORC2 Functions as a Calcium- and cAMP-Sensitive Coincidence Detector , 2004, Cell.

[96]  D. Hardie,et al.  Sensing of energy and nutrients by AMP-activated protein kinase. , 2011, The American journal of clinical nutrition.

[97]  E. Marra,et al.  Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. , 2011, The Biochemical journal.

[98]  T. Yagi,et al.  The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. , 2003, Biochemistry.

[99]  C. Remacle,et al.  Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process , 2008, Molecular Genetics and Genomics.

[100]  E. Fontaine,et al.  Progress on the Mitochondrial Permeability Transition Pore: Regulation by Complex I and Ubiquinone Analogs , 1999, Journal of bioenergetics and biomembranes.

[101]  Domenico de Rasmo,et al.  Phosphorylation pattern of the NDUFS4 subunit of complex I of the mammalian respiratory chain. , 2010, Mitochondrion.

[102]  V. Petruzzella,et al.  A nonsense mutation in the NDUFS4 gene encoding the 18 kDa (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome. , 2001, Human molecular genetics.

[103]  M. Birnbaum,et al.  Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator , 2007, Nature.

[104]  R. Ferrante,et al.  Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[105]  B. Spiegelman,et al.  Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells , 2006, Proceedings of the National Academy of Sciences.

[106]  K. Davies,et al.  Mitochondrial free radical generation, oxidative stress, and aging. , 2000, Free radical biology & medicine.

[107]  V. Petruzzella,et al.  Dysfunctions of Cellular Oxidative Metabolism in Patients with Mutations in the NDUFS1 and NDUFS4 Genes of Complex I* , 2006, Journal of Biological Chemistry.

[108]  J. Hirst,et al.  Analysis of the Subunit Composition of Complex I from Bovine Heart Mitochondria*S , 2003, Molecular & Cellular Proteomics.

[109]  A. Ballabio,et al.  Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia , 2003, The Journal of cell biology.

[110]  T. Hurd,et al.  Complex I within Oxidatively Stressed Bovine Heart Mitochondria Is Glutathionylated on Cys-531 and Cys-704 of the 75-kDa Subunit , 2008, Journal of Biological Chemistry.

[111]  S. Papa,et al.  Phosphorylation of mitochondrial proteins in bovine heart , 1993, FEBS letters.

[112]  I. Fearnley,et al.  The Phosphorylation of Subunits of Complex I from Bovine Heart Mitochondria* , 2004, Journal of Biological Chemistry.

[113]  Steven P Gygi,et al.  Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. , 2005, Nature.

[114]  J. Smeitink,et al.  Mutation in the NDUFS4 gene of complex I abolishes cAMP‐dependent activation of the complex in a child with fatal neurological syndrome , 2001, FEBS letters.

[115]  A. Shaywitz,et al.  CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. , 1999, Annual review of biochemistry.