Fatigue of double-network hydrogels

Abstract The discovery of tough hydrogels of many chemical compositions, and their emerging applications in medicine, clothing, and engineering, has raised a fundamental question: How do hydrogels behave under many cycles of stretch? This paper initiates the study of the fatigue behavior of the classic PAMPS/PAAM double network hydrogels discovered by Gong and her co-workers [25]. We reproduce the hydrogels, and prepare samples of two types, with or without a crack cut before the test. When an uncut sample is subject to cyclic stretches, internal damage accumulates over thousands of cycles until a steady state is reached. When a cut sample is subject to cyclic stretches, the crack extends cycle by cycle if the amplitude of stretch is above a certain value. A threshold of energy release rate exists, below which the crack remains stationary as the sample is cycled. We find a threshold around 400 J/m2 for hydrogels containing PAAM networks of a low density of crosslinkers, and around 200 J/m2 for hydrogels containing PAAM networks of a high density of crosslinkers. The experimental findings are compared to the Lake-Thomas model adapted to the double-network hydrogels.

[1]  Jeong-Yun Sun,et al.  Highly stretchable, transparent ionic touch panel , 2016, Science.

[2]  Anthony G. Evans,et al.  Mechanics of Transformation‐Toughening in Brittle Materials , 1982 .

[3]  Zhigang Suo,et al.  Fatigue fracture of tough hydrogels , 2017 .

[4]  Yoshimi Tanaka,et al.  True Chemical Structure of Double Network Hydrogels , 2009 .

[5]  Z. Suo,et al.  Fatigue fracture of hydrogels , 2017 .

[6]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[7]  Robert Hamilton,et al.  The elastic compensation method for limit and shakedown analysis: A review , 2000 .

[8]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[9]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[10]  Walter M. Elsasser,et al.  The Physical Foundation of Biology , 1959 .

[11]  Pengfei Liu,et al.  Genipin-cross-linked silk sericin/poly(N-isopropylacrylamide) IPN hydrogels: Color reaction between silk sericin and genipin, pore shape and thermo-responsibility , 2015 .

[12]  Robert Langer,et al.  Triggerable tough hydrogels for gastric resident dosage forms , 2017, Nature Communications.

[13]  Gen Kamita,et al.  Lamellar Bilayers as Reversible Sacrificial Bonds To Toughen Hydrogel: Hysteresis, Self-Recovery, Fatigue Resistance, and Crack Blunting , 2011 .

[14]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[15]  Z. Suo,et al.  Electroluminescence of Giant Stretchability , 2016, Advanced materials.

[16]  T. Kurokawa,et al.  Yielding Criteria of Double Network Hydrogels , 2016 .

[17]  Ted Belytschko Plane stress shakedown analysis by finite elements , 1972 .

[18]  T. Kurokawa,et al.  Intra-articular administration of hyaluronic acid increases the volume of the hyaline cartilage regenerated in a large osteochondral defect by implantation of a double-network gel , 2014, Journal of Materials Science: Materials in Medicine.

[19]  Costantino Creton,et al.  Toughening Elastomers with Sacrificial Bonds and Watching Them Break , 2014, Science.

[20]  Daniel R. King,et al.  Energy‐Dissipative Matrices Enable Synergistic Toughening in Fiber Reinforced Soft Composites , 2017 .

[21]  Sytze J Buwalda,et al.  Hydrogels in a historical perspective: from simple networks to smart materials. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[22]  A. Sawczuk,et al.  Shakedown analysis of elastic-plastic structures , 1974 .

[23]  Z. Suo,et al.  Ionic cable , 2015 .

[24]  J. Gong,et al.  Molecular model for toughening in double-network hydrogels. , 2008, The journal of physical chemistry. B.

[25]  J. Gong,et al.  Necking Phenomenon of Double-Network Gels , 2006 .

[26]  Y. Tanaka,et al.  A local damage model for anomalous high toughness of double-network gels , 2007 .

[27]  Giulio Ceradini,et al.  Dynamic Shakedown in Elastic-Plastic Bodies , 1980 .

[28]  Jian Ping Gong,et al.  Why are double network hydrogels so tough , 2010 .

[29]  Wei Wang,et al.  Bioinspired fabrication of high strength hydrogels from non-covalent interactions , 2017 .

[30]  Xuanhe Zhao,et al.  Tough Bonding of Hydrogels to Diverse Nonporous Surfaces , 2015, Nature materials.

[31]  Charles W. Peak,et al.  A review on tough and sticky hydrogels , 2013, Colloid and Polymer Science.

[32]  Qiang Chen,et al.  Engineering of Tough Double Network Hydrogels , 2016 .

[33]  Xuanhe Zhao,et al.  Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures , 2016, Nature Communications.

[34]  J. Aizenberg,et al.  Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns , 2007, Science.

[35]  H. Brown A Model of the Fracture of Double Network Gels , 2007 .

[36]  O. Wichterle,et al.  Hydrophilic Gels for Biological Use , 1960, Nature.

[37]  E. H. Andrews Rupture propagation in hysteresial materials: Stress at a notch , 1963 .

[38]  T. Kurokawa,et al.  Direct Observation on the Surface Fracture of Ultrathin Film Double-Network Hydrogels , 2011 .

[39]  David J. Mooney,et al.  Designing hydrogels for controlled drug delivery. , 2016, Nature reviews. Materials.

[40]  Xuanhe Zhao,et al.  Impermeable Robust Hydrogels via Hybrid Lamination , 2017, Advanced healthcare materials.

[41]  D. Beebe,et al.  Responsive biomimetic hydrogel valve for microfluidics , 2001 .

[42]  Robert O. Ritchie,et al.  Near-threshold fatigue-crack propagation in steels , 1979 .

[43]  Pham Duc Chinh,et al.  On shakedown theory for elastic–plastic materials and extensions , 2008 .

[44]  R. Rivlin,et al.  Rupture of rubber. I. Characteristic energy for tearing , 1953 .

[45]  Shahriar Mirabbasi,et al.  Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array , 2017, Science Advances.

[46]  Xuanhe Zhao,et al.  Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. , 2014, Soft matter.

[47]  Jian Ping Gong,et al.  Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. , 2017, Biomaterials.

[48]  Abhijeet Joshi,et al.  Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. , 2006, Biomaterials.

[49]  F. Masuda Trends in the Development of Superabsorbent Polymers for Diapers , 1994 .

[50]  Huichan Zhao,et al.  Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense , 2015 .

[51]  T. Kurokawa,et al.  A novel double-network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect. , 2009, Macromolecular bioscience.

[52]  Liqun Zhang,et al.  Progress in bio-inspired sacrificial bonds in artificial polymeric materials. , 2017, Chemical Society reviews.

[53]  A. Yee,et al.  Development of a process zone in rubber-modified epoxy polymers , 1998 .

[54]  Yoshihito Osada,et al.  Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. , 2007, Journal of biomedical materials research. Part A.

[55]  Yoshihito Osada,et al.  High Mechanical Strength Double‐Network Hydrogel with Bacterial Cellulose , 2004 .

[56]  Z. Suo,et al.  Organic liquid-crystal devices based on ionic conductors , 2017 .

[57]  E. Orowan,et al.  Fracture and strength of solids , 1949 .

[58]  Sanlin S. Robinson,et al.  Highly stretchable electroluminescent skin for optical signaling and tactile sensing , 2016, Science.

[59]  Yoshihito Osada,et al.  Structural Characteristics of Double Network Gels with Extremely High Mechanical Strength , 2004 .

[60]  Mengmeng Liu,et al.  Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing , 2017, Science Advances.

[61]  T. Kurokawa,et al.  Characterization of internal fracture process of double network hydrogels under uniaxial elongation , 2013 .

[62]  Tingyu Cheng,et al.  Fast-moving soft electronic fish , 2017, Science Advances.

[63]  Hiroyuki Fujiki,et al.  Artificial cartilage made from a novel double-network hydrogel: In vivo effects on the normal cartilage and ex vivo evaluation of the friction property. , 2009, Journal of biomedical materials research. Part A.

[64]  Christian M. Siket,et al.  Instant tough bonding of hydrogels for soft machines and electronics , 2017, Science Advances.

[65]  Xuanhe Zhao,et al.  Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water , 2017, Nature Communications.

[66]  D. Weitz,et al.  Strain history dependence of the nonlinear stress response of fibrin and collagen networks , 2013, Proceedings of the National Academy of Sciences.

[67]  Ali Khademhosseini,et al.  Advances in engineering hydrogels , 2017, Science.

[68]  T. Kurokawa,et al.  Effect of polymer entanglement on the toughening of double network hydrogels. , 2005, The journal of physical chemistry. B.

[69]  J. Gong,et al.  Large Strain Hysteresis and Mullins Effect of Tough Double-Network Hydrogels , 2007 .

[70]  T. Kurokawa,et al.  Double‐Network Hydrogels with Extremely High Mechanical Strength , 2003 .

[71]  J. Gong,et al.  Materials both Tough and Soft , 2014, Science.

[72]  T. Kurokawa,et al.  Brittle–ductile transition of double network hydrogels: Mechanical balance of two networks as the key factor , 2014 .

[73]  Toru Takehisa,et al.  Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De‐swelling Properties , 2002 .

[74]  Zhigang Suo,et al.  Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt , 2014 .

[75]  S. Suresh Fatigue of materials , 1991 .

[76]  P. Paris A rational analytic theory of fatigue , 1961 .

[77]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[78]  A. Evans Perspective on the Development of High‐Toughness Ceramics , 1990 .

[79]  Z. Suo,et al.  Wearable and Washable Conductors for Active Textiles. , 2017, ACS applied materials & interfaces.

[80]  Xiaoli Zhao,et al.  Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole-dipole interaction† , 2011 .

[81]  Z. Suo,et al.  Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives. , 2016, ACS applied materials & interfaces.

[82]  Z. Suo,et al.  Fiber-reinforced tough hydrogels , 2014 .

[83]  A. Thomas,et al.  The strength of highly elastic materials , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[84]  D J Mooney,et al.  Tough adhesives for diverse wet surfaces , 2017, Science.

[85]  Ali Fatemi,et al.  Factors that affect the fatigue life of rubber: A literature survey , 2004 .

[86]  Zhigang Suo,et al.  Ionic skin , 2014, Advanced materials.

[87]  A. G. Thomas Rupture of rubber. V. Cut growth in natural rubber vulcanizates , 1958 .

[88]  Zhigang Suo,et al.  Hybrid Hydrogels with Extremely High Stiffness and Toughness. , 2014, ACS macro letters.

[89]  Farshid Guilak,et al.  Composite Three‐Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage , 2013, Advanced functional materials.

[90]  Jinxiong Zhou,et al.  Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. , 2015, ACS applied materials & interfaces.

[91]  Jian Ping Gong,et al.  Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. , 2013, Nature materials.