Raman Scattering near Metal Nanostructures

We study Raman scattering in active media placed in proximity to different types of metal nanostructures, at wavelengths that display either Fabry–Perot or plasmonic resonances, or a combination of both. We use a semiclassical approach to derive equations of motion for Stokes and anti-Stokes fields that arise from quantum fluctuations. Our calculations suggest that local field enhancement yields Stokes and anti-Stokes conversion efficiencies between 5 and 7 orders of magnitudes larger compared to cases without the metal nanostructure. We also show that to first order in the linear susceptibility the local field correction induces a dynamic, intensity-dependent frequency detuning that at high intensities tends to quench Raman gain.

[1]  Melvin Lax,et al.  Quantum Noise. IV. Quantum Theory of Noise Sources , 1966 .

[2]  Kuo,et al.  Beam-pointing fluctuations in gain-guided amplifiers. , 1991, Physical review letters.

[3]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[4]  Juergen Popp,et al.  Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings , 2006 .

[5]  S. Franzen Intrinsic Limitations on the |E| 4 Dependence of the Enhancement Factor for Surface-Enhanced Raman Scattering , 2009 .

[6]  Hervé Rigneault,et al.  Surface Enhanced Raman Scattering on a Single Nanometric Aperture , 2010 .

[7]  Hongxing Xu,et al.  Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .

[8]  K. H. Lee,et al.  Defect study of proton-irradiated liquid-encapsulated Czochralski GaAs using the positron-annihilation technique , 1995 .

[9]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[10]  P. Milonni,et al.  Solitons and four-wave mixing. , 1986, Physical review. A, General physics.

[11]  C. Bowden,et al.  Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Tuan Vo-Dinh,et al.  SERS chemical sensors and biosensors: new tools for environmental and biological analysis☆ , 1995 .

[13]  J. Coutaz,et al.  Observation of stimulated surface-enhanced Raman scattering through grating excitation of surface plasmons , 1996 .

[14]  J. Tomasi,et al.  Electronic and vibrational dynamic solvent effects on Raman spectra , 2001 .

[15]  Stefan A. Maier,et al.  Broadband nano-focusing of light using kissing nanowires , 2010 .

[16]  Romain Quidant,et al.  Enhanced optical forces between coupled resonant metal nanoparticles. , 2007, Optics letters.

[17]  M. Raymer,et al.  Pulse-energy statistics in stimulated Raman scattering. , 1982, Optics letters.

[18]  R. Boyd,et al.  Four-wave parametric interactions in a strongly driven two-level system , 1981 .

[19]  W. Xu,et al.  A comparison of surface enhanced Raman scattering property between silver electrodes and periodical silver nanowire arrays , 2009 .

[20]  Luca Dal Negro,et al.  Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). , 2009, Optics express.

[21]  Yiping Zhao,et al.  Revisiting the separation dependent surface enhanced Raman scattering , 2008 .

[22]  J. Baumberg,et al.  Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering applications. , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[23]  Juen-Kai Wang,et al.  Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering. , 2007, Optics letters.

[24]  Bowden,et al.  Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[25]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[26]  A. Kocabas,et al.  Plasmonic band gap structures for surface-enhanced Raman scattering. , 2008, Optics express.

[27]  M Scalora,et al.  Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths. , 2011, Optics express.

[28]  Jacopo Tomasi,et al.  Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: A theoretical study , 2002 .

[29]  Tuan Vo-Dinh,et al.  Surface-enhanced Raman spectroscopy using metallic nanostructures , 1998 .

[30]  M. Premaratne,et al.  Analysis of the optical force dependency on beam polarization: dielectric/metallic spherical shell in a Gaussian beam , 2009 .

[31]  S. E. Schwarz,et al.  Stimulated Raman Scattering From Organic Liquids , 1962 .

[32]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[33]  W. Pernice,et al.  Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate. , 2009, Optics express.

[34]  Domenico de Ceglia,et al.  Plasmonic band edge effects on the transmission properties of metal gratings , 2011 .

[35]  D. Pile,et al.  Channel plasmon-polariton in a triangular groove on a metal surface. , 2004, Optics letters.

[36]  Richard P Van Duyne,et al.  Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy. , 2011, The journal of physical chemistry letters.

[37]  A. Polman,et al.  Dispersion and Scattering of Resonant Nanoparticle Chains , 2006 .

[38]  Michael I. Mishchenko,et al.  Electromagnetic scattering by nonspherical particles: A tutorial review , 2009 .

[39]  N. Bloembergen,et al.  Coupling Between Vibrations and Light Waves in Raman Laser Media , 1964 .

[40]  Bowden,et al.  Spontaneous generation of Raman solitons from quantum noise. , 1986, Physical review letters.

[41]  I. Walmsley Quantum noise limit to the beam-pointing stability in stimulated Raman generation , 1991 .

[42]  Hongxing Xu,et al.  Surface-enhanced Raman scattering and fluorescence near metal nanoparticles , 2005 .

[43]  Deepak Bhandari Surface-Enhanced Raman Scattering: Substrate Development and Applications in Analytical Detection , 2011 .

[44]  George C Schatz,et al.  Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons. , 2008, The Journal of chemical physics.

[45]  R. Mathies,et al.  Femtosecond stimulated Raman spectroscopy. , 2007, Annual review of physical chemistry.

[46]  H. Nakatsuji,et al.  Electronic mechanism of the surface enhanced Raman scattering , 1995 .

[47]  J. Dowling,et al.  Pulse propagation in a Raman pumped, four-level medium that exhibits inversionless gain , 1995 .

[48]  R. Mathies,et al.  Femtosecond stimulated Raman spectroscopy , 2011 .

[49]  Alexandre G. Brolo,et al.  Nanohole-Enhanced Raman Scattering , 2004 .

[50]  Majd Zoorob,et al.  Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering applications. , 2006, QELS 2006.