Minkowski’s Conjecture, Well-Rounded Lattices and Topological Dimension

Let A C SLn(R) be the diagonal subgroup, and identify SLn(R)/SLn(Z) with the space of unimodular lattices in Rn. In this paper we show that the closure of any bounded orbit A.LcSLn(R)/SLn(Z) meets the set of well-rounded lattices. This assertion implies Minkowski's conjecture for n = 6 and yields bounds for the density of algebraic integers in totally real sextic fields. The proof is based on the theory of topological dimension, as reflected in the combinatorics of open covers of Rn and Tn.

[1]  Barak Weiss,et al.  On sets invariant under the action of the diagonal group , 2001, Ergodic Theory and Dynamical Systems.

[2]  M. Raghunathan Discrete subgroups of Lie groups , 1972 .

[3]  H. Henn The Cohomology of SL(3, ℤ[1/2]) , 1999 .

[4]  Christophe Soulé,et al.  The cohomology of SL3(Z) , 1978 .

[5]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[6]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[7]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[8]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[9]  Gabriele Nebe,et al.  On the Euclidean minimum of some real number fields , 2005 .

[10]  J. Hatzenbuhler,et al.  DIMENSION THEORY , 1997 .

[11]  H. Swinnerton-Dyer,et al.  On the inhomogeneous minimum of the product of n linear forms , 1956 .

[12]  E. Bayer-Fluckiger A Panorama in Number Theory or The View from Baker's Garden: Ideal Lattices , 2002 .

[13]  F. Dyson On the Product of Four Non-Homogeneous Linear Forms , 1948 .

[14]  Mathématiques DE L’I.H.É.S,et al.  Volume and bounded cohomology , 2003 .

[15]  Avner Ash,et al.  Small-dimensional classifying spaces for arithmetic subgroups of general linear groups , 1984 .

[16]  V. Arnold,et al.  Mathematics: Frontiers and Perspectives , 2000 .

[17]  N. Steenrod,et al.  Foundations of Algebraic Topology , 1952 .

[18]  E. Bayer-Fluckiger Lattices and number Fields , 1999 .

[19]  P. Vámos,et al.  The Missing Axiom of Matroid Theory is Lost Forever , 1978 .

[20]  H. Oh Finiteness of compact maximal flats of bounded volume , 2004, Ergodic Theory and Dynamical Systems.

[21]  Kazuya Kato,et al.  Number Theory 1 , 1999 .

[22]  Hofreiter Diophantische Approximationen , 1936 .

[23]  G. Tomanov,et al.  Closed orbits for actions of maximal tori on homogeneous spaces , 2003 .

[24]  S. Lang Number Theory III , 1991 .

[25]  H. Henn The cohomology of SL ( 3 , Z [ 1 / 2 ] ) , 1998 .

[26]  J. Cassels,et al.  On the product of three homogeneous linear forms and indefinite ternary quadratic forms , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[27]  Cohomology at infinity and the well-rounded retract for general linear groups , 1996, math/9611220.

[28]  H. Minkowski,et al.  Diophantische Approximationen : eine Einführung in die Zahlentheorie , 1907 .

[29]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[30]  P. Pansu Introduction to ² Betti numbers , 1996 .

[31]  A. Woods Covering six space with spheres , 1972 .

[32]  A proof of Minkowski's conjecture on the product of n linear inhomogeneous forms in variables for n⩽5 , 1976 .

[33]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.