Quantum ergodicity on large regular graphs

We propose a version of the Quantum Ergodicity theorem on large regular graphs of fixed valency. This is a property of delocalization of "most" eigenfunctions. We consider expander graphs with few short cycles (for instance random large regular graphs). Our method mimics the proof of Quantum Ergodicity on manifolds: it uses microlocal analysis on regular trees.

[1]  Quantum ergodicity ofC* dynamical systems , 2000, math-ph/0002008.

[2]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[3]  Y. Fyodorov,et al.  Universality of level correlation function of sparse random matrices , 1991 .

[4]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[5]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[6]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[7]  H. Yau,et al.  The Eigenvector Moment Flow and Local Quantum Unique Ergodicity , 2013, 1312.1301.

[8]  No Quantum Ergodicity for Star Graphs , 2003, math-ph/0308005.

[9]  J. Keating,et al.  Eigenfunction Statistics on Quantum Graphs , 2010, 1005.1026.

[10]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[11]  Ioana Dumitriu,et al.  Sparse regular random graphs: Spectral density and eigenvectors , 2009, 0910.5306.

[12]  Antti Knowles,et al.  Quantum Diffusion and Delocalization for Band Matrices with General Distribution , 2010, 1005.1838.

[13]  Value Distribution of the Eigenfunctions and Spectral Determinants of Quantum Star Graphs , 2002, math-ph/0210060.

[14]  B. McKay The expected eigenvalue distribution of a large regular graph , 1981 .

[15]  J. Lafferty,et al.  Level Spacings for Cayley Graphs , 1999 .

[16]  J. Keating,et al.  Quantum Ergodicity for Graphs Related to Interval Maps , 2006, math-ph/0607008.

[17]  Leander Geisinger,et al.  Convergence of the density of states and delocalization of eigenvectors on random regular graphs , 2013, 1305.1039.

[18]  Uzy Smilansky,et al.  Quantum chaos on discrete graphs , 2007, 0704.3525.

[19]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[20]  Antti Knowles,et al.  Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model , 2010, 1002.1695.

[21]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[22]  Pseudo-Differential Calculus on Homogeneous Trees , 2014 .

[23]  U. Smilansky Discrete Graphs – A Paradigm Model for Quantum Chaos , 2013 .

[24]  P. Rowlinson FOURIER ANALYSIS ON FINITE GROUPS AND APPLICATIONS (London Mathematical Society Student Texts 43) , 2000 .

[25]  U. Smilansky,et al.  Percolating level sets of the adjacency eigenvectors of d-regular graphs , 2010 .

[26]  Steve Zelditch,et al.  Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .

[27]  Uzy Smilansky,et al.  Periodic Orbit Theory and Spectral Statistics for Quantum Graphs , 1998, chao-dyn/9812005.

[28]  The range of the Helgason-Fourier transformation on homogeneous trees , 1999, Bulletin of the Australian Mathematical Society.

[29]  Uzy Smilansky,et al.  Quantum Chaos on Graphs , 1997 .

[30]  Brendan D. McKay,et al.  Short Cycles in Random Regular Graphs , 2004, Electron. J. Comb..

[31]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[32]  Z. Rudnick,et al.  Eigenvalue Spacings for Regular Graphs , 1999 .

[33]  S. Zelditch Pseudo-differential analysis on hyperbolic surfaces , 1986 .

[34]  Van H. Vu,et al.  Sparse random graphs: Eigenvalues and eigenvectors , 2010, Random Struct. Algorithms.

[35]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[36]  Elon Lindenstrauss,et al.  Non-localization of eigenfunctions on large regular graphs , 2009, 0912.3239.

[37]  Y. Elon Eigenvectors of the discrete Laplacian on regular graphs—a statistical approach , 2008, 0804.2771.