Quantum ergodicity on large regular graphs
暂无分享,去创建一个
[1] Quantum ergodicity ofC* dynamical systems , 2000, math-ph/0002008.
[2] Harry Kesten,et al. Symmetric random walks on groups , 1959 .
[3] Y. Fyodorov,et al. Universality of level correlation function of sparse random matrices , 1991 .
[4] M. Pinsker,et al. On the complexity of a concentrator , 1973 .
[5] Joel Friedman,et al. A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.
[6] Horng-Tzer Yau,et al. Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.
[7] H. Yau,et al. The Eigenvector Moment Flow and Local Quantum Unique Ergodicity , 2013, 1312.1301.
[8] No Quantum Ergodicity for Star Graphs , 2003, math-ph/0308005.
[9] J. Keating,et al. Eigenfunction Statistics on Quantum Graphs , 2010, 1005.1026.
[10] Horng-Tzer Yau,et al. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.
[11] Ioana Dumitriu,et al. Sparse regular random graphs: Spectral density and eigenvectors , 2009, 0910.5306.
[12] Antti Knowles,et al. Quantum Diffusion and Delocalization for Band Matrices with General Distribution , 2010, 1005.1838.
[13] Value Distribution of the Eigenfunctions and Spectral Determinants of Quantum Star Graphs , 2002, math-ph/0210060.
[14] B. McKay. The expected eigenvalue distribution of a large regular graph , 1981 .
[15] J. Lafferty,et al. Level Spacings for Cayley Graphs , 1999 .
[16] J. Keating,et al. Quantum Ergodicity for Graphs Related to Interval Maps , 2006, math-ph/0607008.
[17] Leander Geisinger,et al. Convergence of the density of states and delocalization of eigenvectors on random regular graphs , 2013, 1305.1039.
[18] Uzy Smilansky,et al. Quantum chaos on discrete graphs , 2007, 0704.3525.
[19] A. Lubotzky,et al. Ramanujan graphs , 2017, Comb..
[20] Antti Knowles,et al. Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model , 2010, 1002.1695.
[21] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[22] Pseudo-Differential Calculus on Homogeneous Trees , 2014 .
[23] U. Smilansky. Discrete Graphs – A Paradigm Model for Quantum Chaos , 2013 .
[24] P. Rowlinson. FOURIER ANALYSIS ON FINITE GROUPS AND APPLICATIONS (London Mathematical Society Student Texts 43) , 2000 .
[25] U. Smilansky,et al. Percolating level sets of the adjacency eigenvectors of d-regular graphs , 2010 .
[26] Steve Zelditch,et al. Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .
[27] Uzy Smilansky,et al. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs , 1998, chao-dyn/9812005.
[28] The range of the Helgason-Fourier transformation on homogeneous trees , 1999, Bulletin of the Australian Mathematical Society.
[29] Uzy Smilansky,et al. Quantum Chaos on Graphs , 1997 .
[30] Brendan D. McKay,et al. Short Cycles in Random Regular Graphs , 2004, Electron. J. Comb..
[31] Nikhil Srivastava,et al. Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[32] Z. Rudnick,et al. Eigenvalue Spacings for Regular Graphs , 1999 .
[33] S. Zelditch. Pseudo-differential analysis on hyperbolic surfaces , 1986 .
[34] Van H. Vu,et al. Sparse random graphs: Eigenvalues and eigenvectors , 2010, Random Struct. Algorithms.
[35] A. Terras. Fourier Analysis on Finite Groups and Applications: Index , 1999 .
[36] Elon Lindenstrauss,et al. Non-localization of eigenfunctions on large regular graphs , 2009, 0912.3239.
[37] Y. Elon. Eigenvectors of the discrete Laplacian on regular graphs—a statistical approach , 2008, 0804.2771.