Uniqueness of solutions in Mean Field Games with several populations and Neumann conditions

We study the uniqueness of solutions to systems of PDEs arising in Mean Field Games with several populations of agents and Neumann boundary conditions. The main assumption requires the smallness of some data, e.g., the length of the time horizon. This complements the existence results for MFG models of segregation phenomena introduced by the authors and Achdou. An application to robust Mean Field Games is also given.

[1]  P. Cardaliaguet,et al.  A Segregation Problem in Multi-Population Mean Field Games , 2016 .

[2]  David M. Ambrose,et al.  Strong solutions for time-dependent mean field games with non-separable Hamiltonians , 2016, 1605.01745.

[3]  A Note on Nonconvex Mean Field Games , 2016, 1612.04725.

[4]  P. Lions,et al.  Mean field games , 2007 .

[5]  M. Bardi,et al.  Mean field games models of segregation , 2016, 1607.04453.

[6]  Olivier Guéant,et al.  A reference case for mean field games models , 2009 .

[7]  Marco Cirant,et al.  Multi-population Mean Field Games systems with Neumann boundary conditions , 2015 .

[8]  Marco Cirant,et al.  Bifurcation and segregation in quadratic two-populations mean field games systems , 2015, 1511.09343.

[9]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[10]  D. Gomes,et al.  Continuous Time Finite State Mean Field Games , 2012, 1203.3173.

[11]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[12]  Martino Bardi,et al.  Explicit solutions of some linear-quadratic mean field games , 2012, Networks Heterog. Media.

[13]  Levon Nurbekyan,et al.  One-Dimensional Stationary Mean-Field Games with Local Coupling , 2016, Dyn. Games Appl..

[14]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[15]  Daniela Tonon,et al.  Time-Dependent Focusing Mean-Field Games: The Sub-critical Case , 2017, 1704.04014.

[16]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[17]  Diogo A. Gomes,et al.  Regularity Theory for Mean-Field Game Systems , 2016 .

[18]  Martino Bardi,et al.  Nonlinear elliptic systems and mean-field games , 2016 .

[19]  Peter E. Caines,et al.  An Invariance Principle in Large Population Stochastic Dynamic Games , 2007, J. Syst. Sci. Complex..

[20]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[21]  P. Cardaliaguet,et al.  Stable solutions in potential mean field game systems , 2016, 1612.01877.

[22]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[23]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Marco Cirant,et al.  Stationary focusing mean-field games , 2016, 1602.04231.

[26]  Tamer Basar,et al.  Linear Quadratic Risk-Sensitive and Robust Mean Field Games , 2017, IEEE Transactions on Automatic Control.

[27]  Shmuel Agmon,et al.  Review: M. H. Protter and H. F. Weinberger, Maximum principles in differential equations , 1971 .

[28]  Fabio S. Priuli,et al.  Linear-Quadratic N-person and Mean-Field Games with Ergodic Cost , 2014, SIAM J. Control. Optim..

[29]  T. Schelling Micromotives and Macrobehavior , 1978 .

[30]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[31]  François Delarue,et al.  Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs, Control, and Games , 2018 .

[32]  Ji-Feng Zhang,et al.  Mean Field Games for Large-Population Multiagent Systems with Markov Jump Parameters , 2012, SIAM J. Control. Optim..

[33]  Hamidou Tembine,et al.  Robust Mean Field Games , 2016, Dyn. Games Appl..

[34]  Martino Bardi,et al.  On non-uniqueness and uniqueness of solutions in finite-horizon Mean Field Games , 2017, ESAIM: Control, Optimisation and Calculus of Variations.

[35]  Diogo A. Gomes,et al.  Mean Field Games Models—A Brief Survey , 2013, Dynamic Games and Applications.