Moveout Analysis By Time-warping

The ideal moveout analysis should be dense, azimuthdependent, and nonhyperbolic. Semblance-based methods are an inefficient approach to obtain such a model. We propose an inversion approach to moveout parameter estimation using automatic flattening of common midpoint (CMP) gathers. In contrast to semblance-based moveout analysis, we directly measure local slopes to obtain event geometries, rather than search for the best-fit surfaces through parameter scanning. We use plane-wave destruction filters to automatically measure local slopes throughout a CMP gather. These slopes are used to predict traveltime surfaces, which are then warped until by a non-physical flattening method. By applying the same warping to a time attribute volume, the shifts in time-squared needed to flatten each event can be computed. From these shifts, bestfit physical parameters of any type of moveout curve can be found using a linear or non-linear least-squares fitting scheme.

[1]  S. Treitel,et al.  An Offset Dependent NMO Velocity Model , 2007 .

[2]  I. Vasconcelos,et al.  Non‐hyperbolic moveout inversion of wide‐azimuth P‐wave data for orthorhombic media , 2006 .

[3]  Vladimir Grechka,et al.  3-D description of normal moveout in anisotropic inhomogeneous media , 1998 .

[4]  C. Sicking,et al.  Estimating HTI in the presence of strong VTI , 2008 .

[5]  Sergey Fomel,et al.  Velocity-independent time-domain seismic imaging using local event slopes , 2007 .

[6]  C. Sicking,et al.  Azimuthal Processing For Fracture Prediction And Image Improvement , 2008 .

[7]  C. Sicking,et al.  3D Azimuthal Imaging , 2007 .

[8]  C. H. Dix SEISMIC VELOCITIES FROM SURFACE MEASUREMENTS , 1955 .

[9]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[10]  F. Rieber,et al.  A NEW REFLECTION SYSTEM WITH CONTROLLED DIRECTIONAL SENSITIVITY , 1936 .

[11]  S. Treitel,et al.  A new travel time estimation method for horizontal strata , 2005 .

[12]  Jack K. Cohen,et al.  Generalized Dix equation and analytic treatment of normal‐moveout velocity for anisotropic media * , 1999, 1901.00037.

[13]  C. Sicking,et al.  Azimuthal Attribute Methodologies: Comparison of NMO Super Gathers, Sectored Isotropic Migration, Iterative Azimuthal Migration , 2008 .

[14]  J. Claerbout,et al.  Flattening without picking , 2006 .

[15]  S. Fomel,et al.  3-D velocity-independent elliptically anisotropic moveout correction , 2008 .

[16]  M. Turhan Taner,et al.  Velocity spectra-digital computer derivation and applications of velocity functions , 1969 .

[17]  Sergey Fomel Predictive painting of 3-D seismic volumes a , 2008 .

[18]  Tariq Alkhalifah,et al.  Velocity analysis for transversely isotropic media , 1995 .

[19]  F. K. Levin Apparent Velocity from Dipping Interface Reflections , 1971 .

[20]  Stuart Crampin Effective anisotropic elastic constants for wave propagation through cracked solids , 1984 .