Parallel Algorithms for Finding SCCs in Implicitly Given Graphs

We examine existing parallel algorithms for detection of strongly connected components and discuss their applicability to the case when the graph to be decomposed is given implicitly. In particular, we list individual techniques that parallel algorithms for SCC detection are assembled from and show how to assemble a new more efficient algorithm for solving the problem. In the paper we also report on a preliminary experimental study we did to evaluate the new algorithm.

[1]  Radu Mateescu,et al.  Parallel state space construction for model-checking , 2001, SPIN '01.

[2]  Lubos Brim,et al.  DiVinE - A Tool for Distributed Verification , 2006, CAV.

[3]  G. Conte,et al.  Parallel State Space Exploration for GSPN Models , 1995, Application and Theory of Petri Nets.

[4]  Gerd Behrmann,et al.  A Performance Study of Distributed Timed Automata Reachability Analysis , 2002, PDMC@CONCUR.

[5]  Lubos Brim,et al.  Parallel breadth-first search LTL model-checking , 2003, 18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings..

[6]  Andreas Podelski,et al.  ACSAR: Software Model Checking with Transfinite Refinement , 2007, SPIN.

[7]  Lawrence Rauchwerger,et al.  Finding strongly connected components in distributed graphs , 2005, J. Parallel Distributed Comput..

[8]  Nancy M. Amato Improved Processor Bounds for Parallel Algorithms for Weighted Directed Graphs , 1993, Inf. Process. Lett..

[9]  van de Jaco Pol,et al.  Detecting strongly connected components in large distributed state spaces , 2005 .

[10]  Lubos Brim,et al.  Accepting Predecessors Are Better than Back Edges in Distributed LTL Model-Checking , 2004, FMCAD.

[11]  Flavio Lerda,et al.  Distributed-Memory Model Checking with SPIN , 1999, SPIN.

[12]  Gary L. Miller,et al.  An Improved Parallel Algorithm that Computes the BFS Numbering of a Directed Graph , 1988, Information Processing Letters.

[13]  Lawrence Rauchwerger,et al.  Identifying Strongly Connected Components in Parallel , 2000, PPSC.

[14]  John H. Reif,et al.  Depth-First Search is Inherently Sequential , 1985, Inf. Process. Lett..

[15]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[16]  Christel Baier,et al.  LiQuor: A tool for Qualitative and Quantitative Linear Time analysis of Reactive Systems , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[17]  David M. Nicol,et al.  Distributed State Space Generation of Discrete-State Stochastic Models , 1995, INFORMS J. Comput..

[18]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[19]  Mieke Massink,et al.  Theoretical and Practical Aspects of SPIN Model Checking , 1999, Lecture Notes in Computer Science.

[20]  Richard Cole,et al.  Faster Optimal Parallel Prefix Sums and List Ranking , 2011, Inf. Comput..

[21]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[22]  David L. Dill,et al.  Parallelizing the Murphi Verifier , 1997, CAV.

[23]  Giorgio De Michelis,et al.  Application and Theory of Petri Nets 1995 , 1995 .

[24]  Kathi Fisler,et al.  Is There a Best Symbolic Cycle-Detection Algorithm? , 2001, TACAS.

[25]  Ian Glendinning,et al.  Parallel and Distributed Processing , 2001, Digital Image Analysis.

[26]  Simona Orzan,et al.  On Distributed Verification and Verified Distribution , 2004 .

[27]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.