Synteny analysis in Rosids with a walnut physical map reveals slow genome evolution in long-lived woody perennials

[1]  J. G. Burleigh,et al.  Deep phylogenetic incongruence in the angiosperm clade Rosidae. , 2015, Molecular phylogenetics and evolution.

[2]  Hong Ma,et al.  Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times , 2014, Nature Communications.

[3]  Li Lin,et al.  Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene , 2014 .

[4]  G. Wong,et al.  Angiosperm Phylogeny Based on 18S/26S rDNA Sequence Data: Constructing a Large Data Set Using Next-Generation Sequence Data , 2014, International Journal of Plant Sciences.

[5]  Shelby L. Bidwell,et al.  An improved genome release (version Mt4.0) for the model legume Medicago truncatula , 2014, BMC Genomics.

[6]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[7]  C. Plomion,et al.  Genetic mapping of EST-derived simple sequence repeats (EST-SSRs) to identify QTL for leaf morphological characters in a Quercus robur full-sib family , 2013, Tree Genetics & Genomes.

[8]  Mihaela M. Martis,et al.  A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor , 2013, Proceedings of the National Academy of Sciences.

[9]  Hong Ma,et al.  Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. , 2012, The New phytologist.

[10]  J. Dvorak,et al.  Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms , 2012, BMC Genomics.

[11]  J. Salse In silico archeogenomics unveils modern plant genome organisation, regulation and evolution. , 2012, Current opinion in plant biology.

[12]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[13]  Yeting Zhang,et al.  A genome triplication associated with early diversification of the core eudicots , 2012, Genome Biology.

[14]  S. Young,et al.  Dynamo maker ready to roll , 2011, Nature.

[15]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[16]  J. Dvorak,et al.  Gene Space Dynamics During the Evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor Genomes , 2011, Molecular biology and evolution.

[17]  D. E. Soltis,et al.  Angiosperm phylogeny: 17 genes, 640 taxa. , 2011, American journal of botany.

[18]  Henry D. Priest,et al.  The genome of woodland strawberry (Fragaria vesca) , 2011, Nature Genetics.

[19]  J. Dvorak,et al.  Characterizing the walnut genome through analyses of BAC end sequences , 2011, Plant Molecular Biology.

[20]  Andrea Zuccolo,et al.  A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure , 2011, Genome Biology.

[21]  Y. Qiu,et al.  Angiosperm phylogeny inferred from sequences of four mitochondrial genes , 2010 .

[22]  Roger E Bumgarner,et al.  The genome of the domesticated apple (Malus × domestica Borkh.) , 2010, Nature Genetics.

[23]  Jan P. Buchmann,et al.  Patching gaps in plant genomes results in gene movement and erosion of colinearity. , 2010, Genome research.

[24]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[25]  Sebastian Proost,et al.  The flowering world: a tale of duplications. , 2009, Trends in plant science.

[26]  Asan,et al.  The genome of the cucumber, Cucumis sativus L. , 2009, Nature Genetics.

[27]  J. Dvorak,et al.  A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat , 2009, BMC Genomics.

[28]  M T Clegg,et al.  Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae , 2009, Proceedings of the National Academy of Sciences.

[29]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[30]  Steven Maere,et al.  Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event , 2009, Proceedings of the National Academy of Sciences.

[31]  J. G. Burleigh,et al.  Surviving the K-T mass extinction: New perspectives of polyploidization in angiosperms , 2009, Proceedings of the National Academy of Sciences.

[32]  D. Soltis,et al.  Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.

[33]  J. Braverman,et al.  Reconsidering the generation time hypothesis based on nuclear ribosomal ITS sequence comparisons in annual and perennial angiosperms , 2008, BMC Evolutionary Biology.

[34]  M. Donoghue,et al.  Rates of Molecular Evolution Are Linked to Life History in Flowering Plants , 2008, Science.

[35]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[36]  Srinivasachary,et al.  Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes , 2007, Theoretical and Applied Genetics.

[37]  Steven G. Schroeder,et al.  Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History , 2007, PLoS genetics.

[38]  A. Hilliker,et al.  Meiotic recombination in Turnera (Turneraceae): extreme sexual difference in rates, but no evidence for recombination suppression associated with the distyly (S) locus , 2007, Heredity.

[39]  J. Dvorak,et al.  Mechanisms and rates of birth and death of dispersed duplicated genes during the evolution of a multigene family in diploid and tetraploid wheats. , 2007, Molecular biology and evolution.

[40]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[41]  M. Walker,et al.  Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia) , 2006, Theoretical and Applied Genetics.

[42]  J. Dvorak,et al.  Comparative genetic maps reveal extreme crossover localization in the Aegilops speltoides chromosomes , 2005, Theoretical and Applied Genetics.

[43]  L. C. Hannah,et al.  Helitrons contribute to the lack of gene colinearity observed in modern maize inbreds. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Joachim Messing,et al.  Gene movement by Helitron transposons contributes to the haplotype variability of maize. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Lydiate,et al.  Genome-wide analysis of the frequency and distribution of crossovers at male and female meiosis in Sinapis alba L. (white mustard) , 2005, Theoretical and Applied Genetics.

[46]  K. Andreasen Implications of molecular systematic analyses on the conservation of rare and threatened taxa: Contrasting examples from Malvaceae , 2005, Conservation Genetics.

[47]  R. Mauricio Gene order in plants : a slow but sure shuffle. Commentary , 2005 .

[48]  T. Vision Gene order in plants: a slow but sure shuffle. , 2005, The New phytologist.

[49]  J. Keulemans,et al.  Genetic linkage maps of two apple cultivars (Malus × domestica Borkh.) based on AFLP and microsatellite markers , 2005, Molecular Breeding.

[50]  Sean R. Eddy,et al.  Pack-MULE transposable elements mediate gene evolution in plants , 2004, Nature.

[51]  P. This,et al.  Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics , 2004, Theoretical and Applied Genetics.

[52]  D. Soltis,et al.  Phylogenetic Relationships in Fagales Based on DNA Sequences from Three Genomes , 2004, International Journal of Plant Sciences.

[53]  D. Marshall,et al.  Higher recombination frequencies in female compared to male meisoses in Brassica oleracea , 1996, Theoretical and Applied Genetics.

[54]  A. Kilian,et al.  Comparative mapping of the barley genome with male and female recombination-derived, doubled haploid populations , 1995, Molecular and General Genetics MGG.

[55]  K. Devos,et al.  Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum glaucum) using RFLP markers , 1995, Theoretical and Applied Genetics.

[56]  S. Manchester Early history of theJuglandaceae , 1989, Plant Systematics and Evolution.

[57]  G. Simchen,et al.  Chiasmata and the breeding system in wild populations of diploid wheats , 1972, Chromosoma.

[58]  A. Hughes,et al.  Non-random association of transposable elements with duplicated genomic blocks in Arabidopsis thaliana. , 2003, Molecular phylogenetics and evolution.

[59]  Carolyn Thomas,et al.  High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. , 2003, Genomics.

[60]  T. Hayashi,et al.  Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears , 2002, Theoretical and Applied Genetics.

[61]  B. G. Baldwin,et al.  Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S-26S rDNA internal and external transcribed spacers. , 2001, Molecular biology and evolution.

[62]  P. Manos,et al.  Evolution, Phylogeny, and Systematics of the Juglandaceae , 2001 .

[63]  M. A. Koch,et al.  Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). , 2000, Molecular biology and evolution.

[64]  C. Plomion,et al.  A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers , 1998, Theoretical and Applied Genetics.

[65]  G. King,et al.  Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers , 1998, Theoretical and Applied Genetics.

[66]  Han Ying,et al.  Systematic Position of the Rhoipteleaceae: Evidence from Nucleotide Sequences of rbc L Gene , 1998 .

[67]  Carol Soderlund,et al.  FPC: a system for building contigs from restriction fingerprinted clones , 1997, Comput. Appl. Biosci..

[68]  A. Eyre-Walker,et al.  Correlated rates of synonymous site evolution across plant genomes. , 1997, Molecular biology and evolution.

[69]  C. Plomion,et al.  Recombination rate differences for pollen parents and seed parents in Pinus pinaster , 1996, Heredity.

[70]  M T Clegg,et al.  Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[71]  S. Kurita,et al.  New Chromosome Counts of Some Dicots in the Sino-Japanese Region and Their Systematics and Evolutionary Significance , 1994 .

[72]  A. Hughes The evolution of functionally novel proteins after gene duplication , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[73]  Andrew P. Martin,et al.  Body size, metabolic rate, generation time, and the molecular clock. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Dellaporta,et al.  Molecular analysis of Ac transposition and DNA replication. , 1992, Genetics.

[75]  A. Korol,et al.  Sex difference in recombination frequency in Arabidopsis , 1990, Heredity.

[76]  S. Manchester Early history of the Juglandaceae , 1989 .

[77]  D. Robertson,et al.  Genetic evidence of mutator-induced deletions in the short arm of chromosome 9 of maize. , 1987, Genetics.

[78]  R. Britten,et al.  Rates of DNA sequence evolution differ between taxonomic groups. , 1986, Science.

[79]  A. Hilliker,et al.  Greater meiotic recombination in male vs. female gametes in Pinus radiata , 1983 .

[80]  K. Korey SPECIES NUMBER, GENERATION LENGTH, AND THE MOLECULAR CLOCK , 1981, Evolution; international journal of organic evolution.

[81]  G. Fink,et al.  DNA rearrangements associated with a transposable element in yeast , 1980, Cell.

[82]  B. Hoyer,et al.  Evolution of primate DNA sequences , 1972 .

[83]  G. Ledyard Stebbins,et al.  Chromosomal evolution in higher plants , 1971 .

[84]  G. Ledyard Stebbins,et al.  Variation and Evolution in Plants , 1951 .