Optimizing Software Rejuvenation Schedule Based on the Kernel Density Estimation

Abstract In this paper, we consider the optimal software rejuvenation schedule which maximizes the steady-state system availability. We develop a statistical algorithm to improve the estimation accuracy in the situation where a small number of failure time data is obtained. More precisely, based on the kernel density estimation, we estimate the underlying failure time distribution from the sample data. We propose a framework based on the kernel density estimation to estimate the optimal software rejuvenation schedule from small sample data. In simulation experiments, we show improvement in convergence rate to the real optimal solution in comparison with the conventional algorithm.

[1]  Robert P. W. Duin,et al.  On the Choice of Smoothing Parameters for Parzen Estimators of Probability Density Functions , 1976, IEEE Transactions on Computers.

[2]  R. E. Barlow,et al.  Total time on test processes and applications to failure data , 1975 .

[3]  Tadashi Dohi,et al.  Analysis of software cost models with rejuvenation , 2000, Proceedings. Fifth IEEE International Symposium on High Assurance Systems Engineering (HASE 2000).

[4]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[5]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[6]  Tadashi Dohi,et al.  Statistical non-parametric algorithms to estimate the optimal software rejuvenation schedule , 2000, Proceedings. 2000 Pacific Rim International Symposium on Dependable Computing.

[7]  Kishor S. Trivedi,et al.  Proactive management of software aging , 2001, IBM J. Res. Dev..

[8]  T. Cacoullos Estimation of a multivariate density , 1966 .

[9]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[10]  A. Izenman Recent Developments in Nonparametric Density Estimation , 1991 .

[11]  Yennun Huang,et al.  Software rejuvenation: analysis, module and applications , 1995, Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers.

[12]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[13]  Daniel P. Siewiorek,et al.  High-availability computer systems , 1991, Computer.

[14]  Edward N. Adams,et al.  Optimizing Preventive Service of Software Products , 1984, IBM J. Res. Dev..