Punctuality of railway operations and timetable stability analysis

Reliability of railway operations becomes more and more demanding with increasing train traffic, which asks for stable and robust timetables capable of neutralizing deviations from scheduled time-distance paths and stabilizing delay propagation. Timetable performance evaluation is thus a crucial aspect in the railway timetable design process to guarantee and maintain reliability of operations. Feedback from realized railway operations is essential to evaluate the performance of the timetable in practice and to find and improve structural shortcomings in the timetable design. This thesis presents the developed software TNV-Prepare which recovers the infrastructure utilization of train traffic from train detection data of the safety and signalling systems based on daily records of the train describer systems, the so-called TNV-logfiles. A case-study at the Dutch railway station Eindhoven demonstrates the potential of a statistical analysis of this train traffic data to identify structural sources of delays. Railway operations are characterized by many network interdependencies resulting from the timetable and shared usage of railway infrastructure. Therefore, a railway timetable must be carefully tested on stability and robustness before implementation using a mathematical model of the scheduled railway operations. This thesis proposes an analytical model for evaluating timetable stability and robustness based on max-plus algebra. The max-plus linear system approach gives a formal stability test based on a max-plus eigenvalue problem, identifies critical events and processes, quantifies robustness in terms of recovery times, and computes the propagation of delays over time and space. The method has been implemented in the software PETER (Performance Evaluation of Timed Events in Railways) which enables users to analyse large-scale network timetables in real-time. A case-study of the Dutch national railway timetable illustrates the developed methodology.

[1]  Leo G. Kroon,et al.  Efficient Circulation of Railway Rolling Stock , 2002, Transp. Sci..

[2]  Karl Nachtigall,et al.  Cutting Planes for a Polyhedron Associated with a Periodic Network. , 1996 .

[3]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[4]  Malachy Carey,et al.  Properties of expected costs and performance measures in stochastic models of scheduled transport , 1995 .

[5]  Jiacun Wang,et al.  Timed Petri Nets: Theory and Application , 1998 .

[6]  R. Bellman,et al.  Dynamic Programming and Markov Processes , 1960 .

[7]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[8]  M. V. Riel,et al.  Crew Scheduling for Netherlands Railways “ Destination : Customer ” , 2000 .

[9]  J.H.M. Goossens,et al.  Models and algorithms for railway line planning problems , 2004 .

[10]  U. T. Zimmermann,et al.  Train Schedule Optimization in Public Rail Transport , 2003 .

[11]  Patrick T. Harker,et al.  Tactical Scheduling of Rail Operations: The SCAN I System , 1991, Transp. Sci..

[12]  Leo G. Kroon,et al.  Allocation of Railway Rolling Stock for Passenger Trains , 2002, Transp. Sci..

[13]  Wulf Schwanhäuβer,et al.  THE STATUS OF GERMAN RAILWAY OPERATIONS MANAGEMENT IN RESEARCH AND PRACTICE , 1994 .

[14]  Udo Hermann Untersuchungen zur Verspätungsentwicklung von Fernreisezügen auf der Datengrundlage der rechnerunterstützten Zugüberwachung Frankfurt am Main , 1996 .

[15]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[16]  U. Rothblum Algebraic eigenspaces of nonnegative matrices , 1975 .

[17]  A Radtke,et al.  Automated planning of timetables in large railway networks using a microscopic data basis and railway simulation techniques , 2004 .

[18]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[19]  P. Kreuzer,et al.  Optimal lines for railway systems , 1997 .

[20]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[21]  Peter Teunissen,et al.  Nonlinear least squares , 1990 .

[22]  Jean Mairesse,et al.  Modeling and analysis of timed Petri nets using heaps of pieces , 1997, 1997 European Control Conference (ECC).

[23]  D Emery,et al.  CAPRES NETWORK CAPACITY ASSESSMENT FOR SWISS NORTH-SOUTH RAIL FREIGHT TRAFFIC , 2000 .

[24]  J. Quadrat,et al.  Linear Projectors in the max-plus Algebra , 1997 .

[25]  Michiel Vromans,et al.  Reliability of Railway Systems , 2005 .

[26]  B. Heidergott,et al.  Series Expansions of Generalized Matrix Products , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[27]  Wulf Schwanhäußer,et al.  Rechnerunterstützte analytische Ermittlung der Kapazität von Eisenbahnnetzen , 2002 .

[28]  Rob M.P. Goverde,et al.  Synchronization Control of Scheduled Train Services to Minimize Passenger Waiting Times , 1998 .

[29]  I A Hansen,et al.  Hindrance Between Conflicting Train Movements At A Level Crossing , 2002 .

[30]  Vukan R Vuchic,et al.  Urban Public Transportation: Systems and Technology , 1981 .

[31]  Leo G. Kroon,et al.  Decision Support Systems Support the Search for Win-Win Solutions in Railway Network Design , 1999, Interfaces.

[32]  Arjang A. Assad,et al.  MODELS FOR RAIL TRANSPORTATION , 1980 .

[33]  D Middelkoop,et al.  Testing the stability of the rail network , 2002 .

[34]  Winnie Daamen,et al.  Modelling passenger flows in public transport facilities , 2004 .

[35]  Malachy Carey,et al.  Ex ante heuristic measures of schedule reliability , 1999 .

[36]  Rob M.P. Goverde,et al.  Propagation of train delays in stations , 2002 .

[37]  Daniel Hürlimann,et al.  Objektorientierte Modellierung von Infrastrukturelementen und Betriebsvorgängen im Eisenbahnwesen , 2002 .

[38]  Rajesh K. Gupta,et al.  Faster maximum and minimum mean cycle algorithms for system-performance analysis , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[39]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[40]  Rob M.P. Goverde,et al.  TNV-PREPARE: ANALYSIS OF DUTCH RAILWAY OPERATIONS BASED ON TRAIN DETECTION DATA , 2000 .

[41]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[42]  Dick Middelkoop,et al.  Simone: Large scale train network simulations , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[43]  Malachy Carey,et al.  Reliability of interconnected scheduled services , 1994 .

[44]  B. De Schutter,et al.  Modeling and control of railway networks , 2004, ACC.

[45]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[46]  Karl Heinz Kraft Zugverspätungen und Betriebssteuerung von Stadtschnellbahnen in systemtheoretischer Analyse , 1981 .

[47]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[48]  K. Nachtigall,et al.  Periodic Network Optimization with Different Arc Frequencies , 1996, Discret. Appl. Math..

[49]  Tadao Murata,et al.  Circuit theoretic analysis and synthesis of marked graphs , 1977 .

[50]  Wolfgang Domschke,et al.  Schedule synchronization for public transit networks , 1989 .

[51]  Michael R. Bussieck,et al.  Optimal Lines in Public Rail Transport , 1998 .

[52]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[53]  Michiel Adriaan Odijk,et al.  Railway timetable generation , 1998 .

[54]  Winter Nie,et al.  Waiting: integrating social and psychological perspectives in operations management , 2000 .

[55]  Andrew Nash,et al.  Railroad simulation using OpenTrack , 2004 .

[56]  Karl Nachtigall,et al.  A genetic algorithm approach to periodic railway synchronization , 1996, Comput. Oper. Res..

[57]  T. Sakaguchi,et al.  A Train Traffic Model Based On Coloured PetriNets And Its Application To A Train SchedulePlanning System , 1970 .

[58]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[59]  M. Renkema,et al.  TRACE SUPERVISION SYSTEM FOR DISPATCHING AND PASSENGER INFORMATION , 1970, ICCAD 1996.

[60]  T Groger TIMETABLE SIMULATION BY SOPHISTICATED CONFLICT RESOLUTION BETWEEN TRAIN PATHS , 2004 .

[61]  Leo G. Kroon,et al.  A rolling stock circulation model for combining and splitting of passenger trains , 2006, Eur. J. Oper. Res..

[62]  C. Leake Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[63]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[64]  W Daamen A QUANTITATIVE ASSESSMENT ON THE DESIGN OF A RAILWAY SYSTEM , 2002 .

[65]  Leon W P Peeters,et al.  Cyclic Railway Timetable Optimization , 2003 .

[66]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .

[67]  Edouard Wagneur,et al.  Moduloïds and pseudomodules 1. Dimension theory , 1989, Discret. Math..

[68]  Bernd Heidergott,et al.  Towards a (Max,+) Control Theory for Public Transportation Networks , 2001, Discret. Event Dyn. Syst..

[69]  Rob M.P. Goverde,et al.  PERFORMANCE EVALUATION OF NETWORK TIMETABLES USING PETER , 2002 .

[70]  A. F. De Kort,et al.  Train Movement Analysis at Railway Stations: Procedures & Evaluation of Wakob's Approach , 1999 .

[71]  E. Mühlhans Berechnung der Verspätungsentwicklung bei Zugfahrten , 1990 .

[72]  R. Schnabel,et al.  10. Nonlinear Least Squares , 1996 .

[73]  Xiaolan Xie,et al.  Optimization of the number of transportation devices in a flexible manufacturing system using event graphs , 1997, IEEE Trans. Ind. Electron..

[74]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[75]  S. Gaubert Theorie des systemes lineaires dans les dioides , 1992 .

[76]  Didier Dubois,et al.  A linear-system-theoretic view of discrete-event processes , 1983 .

[77]  J Jacobs Reducing delays by means of computer-aided 'on-the-spot' rescheduling , 2004 .

[78]  R. J. Van Egmond,et al.  Railway capacity assessment, an algebraic approach , 1999 .

[79]  Amir Pnueli,et al.  Marked Directed Graphs , 1971, J. Comput. Syst. Sci..

[80]  Subiono On classes of min-max-plus systems and their applications , 2000 .

[81]  Lex Schrijver,et al.  Minimum circulation of railway stock , 1993 .

[82]  Matteo Fischetti,et al.  Algorithms for railway crew management , 1997, Math. Program..

[83]  Ali Dasdan,et al.  Experimental analysis of the fastest optimum cycle ratio and mean algorithms , 2004, TODE.

[84]  J. Quadrat,et al.  Numerical Computation of Spectral Elements in Max-Plus Algebra☆ , 1998 .

[85]  S. Irani,et al.  Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[86]  G. A. Fries,et al.  Computer Aided Railway Engineering , 1998 .

[87]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[88]  M. van Leur NS Introduces A New Generation AutomaticTrain Protection , 1970 .

[89]  Paolo Toth,et al.  A Survey of Optimization Models for Train Routing and Scheduling , 1998, Transp. Sci..

[90]  M. den Brok,et al.  VPT, A New Systems Architecture ForPlanning And Control Of Train Traffic In TheNetherlands , 1970 .

[91]  J. Golan Semirings and Affine Equations over Them: Theory and Applications , 2003 .

[92]  Matteo Fischetti,et al.  Crew Scheduling for Netherlands Railways , 2000 .

[93]  R.M.P. Goverde,et al.  IMPROVING PUNCTUALITY AND TRANSFER RELIABILITY BY RAILWAY TIMETABLE OPTIMIZATION , 1999 .

[94]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[95]  Jürgen Jacobs,et al.  Rechnerunterstützte Konfliktermittlung und Entscheidungsunterstützung bei der Disposition des Zuglaufs , 2003 .

[96]  J. Quadrat,et al.  Max-Plus Algebra and System Theory: Where We Are and Where to Go Now , 1999 .

[97]  Raymond Cuninghame-Green,et al.  Bases in max-algebra , 2004 .

[98]  I. A. Hansen,et al.  System analysis of train operations and track occupancy at railway stations , 2005 .

[99]  F Makkinga,et al.  AUTOMATIC CONFLICT DETECTION AND DECISION SUPPORT FOR OPTIMAL USAGE OF RAILWAY INFRASTRUCTURE , 2000 .

[100]  G. S. Y. Koelemeijer,et al.  ON THE BEHAVIOUR OF CLASSES OF MIN-MAX-PLUS SYSTEMS , 2003 .

[101]  Michiel A. Odijk,et al.  A CONSTRAINT GENERATION ALGORITHM FOR THE CONSTRUCTION OF PERIODIC RAILWAY TIMETABLES , 1996 .

[102]  J. G. Braker,et al.  Algorithms and Applications in Timed Discrete Event Systems , 1993 .

[103]  A. Bouma,et al.  Linienplanung und Simulation für öffentliche Verkehrswege in Praxis und Theorie , 1994 .

[104]  Thomas Andreas Gröger,et al.  Simulation der Fahrplanerstellung auf der Basis eines hierarchischen Trassenmanagements und Nachweis der Stabilität der Betriebsabwicklung , 2002 .

[105]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[106]  Xiaolan Xie,et al.  Optimisation of invariant criteria for event graphs , 1992 .

[107]  Leo G. Kroon,et al.  A Branch-and-Cut Approach for Solving Railway Line-Planning Problems , 2004, Transp. Sci..

[108]  Rob M.P. Goverde,et al.  Delay distributions in railway stations , 2001 .

[109]  Ali Dasdan,et al.  An Experimental Study of Minimum Mean Cycle Algorithms , 1998 .

[110]  MengChu Zhou,et al.  Tactical scheduling of rail operations: a Petri net approach , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[111]  Erhan Kozan,et al.  Modeling Train Delays in Urban Networks , 1998, Transp. Sci..

[112]  Leo G. Kroon,et al.  Routing trains through a railway station based on a node packing model , 2001, Eur. J. Oper. Res..

[113]  J. Demitz,et al.  TIMETABLE STABILITY - USING SIMULATION TO ENSURE QUALITY IN A REGULAR INTERVAL TIMETABLE , 2004 .

[114]  Alexander Schrijver Routing and timetabling by topological search , 1998 .

[115]  Wil M. P. van der Aalst,et al.  Analysis of railway stations by means of interval timed coloured Petri nets , 1995, Real-Time Systems.

[116]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[117]  C. Petri Kommunikation mit Automaten , 1962 .

[118]  Rob M.P. Goverde,et al.  Delay propagation and process management at railway stations , 2001 .

[119]  J. Mairesse A graphical approach of the spectral theory in the (max, +) algebra , 1995, IEEE Trans. Autom. Control..

[120]  Kees Roos,et al.  An efficient algorithm for critical circuits and finite eigenvectors in the max-plus algebra , 1999 .

[121]  Werner Weigand Graphentheoretisches Verfahren zur Fahrplangestaltung in Transportnetzen unter Berücksichtigung von Pufferzeiten mittels interaktiver Rechentechnik , 1981 .

[122]  Jörn Pachl,et al.  Railway Operation and Control , 2002 .

[123]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[124]  Jacob van der Woude,et al.  Power Algorithms for (max,+)- and Bipartite (min,max,+)-Systems , 2000, Discret. Event Dyn. Syst..

[125]  A. Hegyi,et al.  Model Predictive Control Approach for Recovery from Delays in Railway Systems , 2002 .

[126]  Phil Howlett,et al.  Energy-efficient train control , 1994 .

[127]  Mohideen Noordeen Stability analysis of cyclic timetables for a highly interconnected rail network , 1996 .

[128]  Joost N. Kok,et al.  Genetic Improvement of Railway Timetables , 1994, PPSN.

[129]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[130]  James H. Bookbinder,et al.  Transfer Optimization in a Transit Network , 1992, Transp. Sci..

[131]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[132]  P. Rietveld,et al.  Coping with unreliability in public transport chains , 1999 .

[133]  Richard M. Karp,et al.  Parametric shortest path algorithms with an application to cyclic staffing , 1981, Discret. Appl. Math..

[134]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[135]  Ravindra B. Bapat,et al.  A max version of the Perron-Frobenius theorem , 1998 .

[136]  P. Dudnikov,et al.  Endomorphisms of finitely generated free semimodules , 1992 .

[137]  H I Andrews Railway Traction: The Principles of Mechanical and Electrical Railway Traction , 1986 .

[138]  Geert Jan Olsder,et al.  The power algorithm in max algebra , 1993 .

[139]  Michael R. Bussieck,et al.  Discrete optimization in public rail transport , 1997, Math. Program..

[140]  Richard J. Boucherie,et al.  A solvable queueing network model for railway networks and its validation and applications for the Netherlands , 2002, Eur. J. Oper. Res..

[141]  Walter Ukovich,et al.  A Mathematical Model for Periodic Scheduling Problems , 1989, SIAM J. Discret. Math..