Punctuality of railway operations and timetable stability analysis
暂无分享,去创建一个
[1] Leo G. Kroon,et al. Efficient Circulation of Railway Rolling Stock , 2002, Transp. Sci..
[2] Karl Nachtigall,et al. Cutting Planes for a Polyhedron Associated with a Periodic Network. , 1996 .
[3] Donald B. Johnson,et al. Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.
[4] Malachy Carey,et al. Properties of expected costs and performance measures in stochastic models of scheduled transport , 1995 .
[5] Jiacun Wang,et al. Timed Petri Nets: Theory and Application , 1998 .
[6] R. Bellman,et al. Dynamic Programming and Markov Processes , 1960 .
[7] Richard M. Karp,et al. A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..
[8] M. V. Riel,et al. Crew Scheduling for Netherlands Railways “ Destination : Customer ” , 2000 .
[9] J.H.M. Goossens,et al. Models and algorithms for railway line planning problems , 2004 .
[10] U. T. Zimmermann,et al. Train Schedule Optimization in Public Rail Transport , 2003 .
[11] Patrick T. Harker,et al. Tactical Scheduling of Rail Operations: The SCAN I System , 1991, Transp. Sci..
[12] Leo G. Kroon,et al. Allocation of Railway Rolling Stock for Passenger Trains , 2002, Transp. Sci..
[13] Wulf Schwanhäuβer,et al. THE STATUS OF GERMAN RAILWAY OPERATIONS MANAGEMENT IN RESEARCH AND PRACTICE , 1994 .
[14] Udo Hermann. Untersuchungen zur Verspätungsentwicklung von Fernreisezügen auf der Datengrundlage der rechnerunterstützten Zugüberwachung Frankfurt am Main , 1996 .
[15] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[16] U. Rothblum. Algebraic eigenspaces of nonnegative matrices , 1975 .
[17] A Radtke,et al. Automated planning of timetables in large railway networks using a microscopic data basis and railway simulation techniques , 2004 .
[18] Robert E. Tarjan,et al. Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..
[19] P. Kreuzer,et al. Optimal lines for railway systems , 1997 .
[20] Valerie Isham,et al. Non‐Negative Matrices and Markov Chains , 1983 .
[21] Peter Teunissen,et al. Nonlinear least squares , 1990 .
[22] Jean Mairesse,et al. Modeling and analysis of timed Petri nets using heaps of pieces , 1997, 1997 European Control Conference (ECC).
[23] D Emery,et al. CAPRES NETWORK CAPACITY ASSESSMENT FOR SWISS NORTH-SOUTH RAIL FREIGHT TRAFFIC , 2000 .
[24] J. Quadrat,et al. Linear Projectors in the max-plus Algebra , 1997 .
[25] Michiel Vromans,et al. Reliability of Railway Systems , 2005 .
[26] B. Heidergott,et al. Series Expansions of Generalized Matrix Products , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[27] Wulf Schwanhäußer,et al. Rechnerunterstützte analytische Ermittlung der Kapazität von Eisenbahnnetzen , 2002 .
[28] Rob M.P. Goverde,et al. Synchronization Control of Scheduled Train Services to Minimize Passenger Waiting Times , 1998 .
[29] I A Hansen,et al. Hindrance Between Conflicting Train Movements At A Level Crossing , 2002 .
[30] Vukan R Vuchic,et al. Urban Public Transportation: Systems and Technology , 1981 .
[31] Leo G. Kroon,et al. Decision Support Systems Support the Search for Win-Win Solutions in Railway Network Design , 1999, Interfaces.
[32] Arjang A. Assad,et al. MODELS FOR RAIL TRANSPORTATION , 1980 .
[33] D Middelkoop,et al. Testing the stability of the rail network , 2002 .
[34] Winnie Daamen,et al. Modelling passenger flows in public transport facilities , 2004 .
[35] Malachy Carey,et al. Ex ante heuristic measures of schedule reliability , 1999 .
[36] Rob M.P. Goverde,et al. Propagation of train delays in stations , 2002 .
[37] Daniel Hürlimann,et al. Objektorientierte Modellierung von Infrastrukturelementen und Betriebsvorgängen im Eisenbahnwesen , 2002 .
[38] Rajesh K. Gupta,et al. Faster maximum and minimum mean cycle algorithms for system-performance analysis , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[39] Robert E. Tarjan,et al. Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.
[40] Rob M.P. Goverde,et al. TNV-PREPARE: ANALYSIS OF DUTCH RAILWAY OPERATIONS BASED ON TRAIN DETECTION DATA , 2000 .
[41] Stephen Warshall,et al. A Theorem on Boolean Matrices , 1962, JACM.
[42] Dick Middelkoop,et al. Simone: Large scale train network simulations , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).
[43] Malachy Carey,et al. Reliability of interconnected scheduled services , 1994 .
[44] B. De Schutter,et al. Modeling and control of railway networks , 2004, ACC.
[45] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[46] Karl Heinz Kraft. Zugverspätungen und Betriebssteuerung von Stadtschnellbahnen in systemtheoretischer Analyse , 1981 .
[47] David Thomas,et al. The Art in Computer Programming , 2001 .
[48] K. Nachtigall,et al. Periodic Network Optimization with Different Arc Frequencies , 1996, Discret. Appl. Math..
[49] Tadao Murata,et al. Circuit theoretic analysis and synthesis of marked graphs , 1977 .
[50] Wolfgang Domschke,et al. Schedule synchronization for public transit networks , 1989 .
[51] Michael R. Bussieck,et al. Optimal Lines in Public Rail Transport , 1998 .
[52] Thomas F. Coleman,et al. Optimization Toolbox User's Guide , 1998 .
[53] Michiel Adriaan Odijk,et al. Railway timetable generation , 1998 .
[54] Winter Nie,et al. Waiting: integrating social and psychological perspectives in operations management , 2000 .
[55] Andrew Nash,et al. Railroad simulation using OpenTrack , 2004 .
[56] Karl Nachtigall,et al. A genetic algorithm approach to periodic railway synchronization , 1996, Comput. Oper. Res..
[57] T. Sakaguchi,et al. A Train Traffic Model Based On Coloured PetriNets And Its Application To A Train SchedulePlanning System , 1970 .
[58] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[59] M. Renkema,et al. TRACE SUPERVISION SYSTEM FOR DISPATCHING AND PASSENGER INFORMATION , 1970, ICCAD 1996.
[60] T Groger. TIMETABLE SIMULATION BY SOPHISTICATED CONFLICT RESOLUTION BETWEEN TRAIN PATHS , 2004 .
[61] Leo G. Kroon,et al. A rolling stock circulation model for combining and splitting of passenger trains , 2006, Eur. J. Oper. Res..
[62] C. Leake. Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .
[63] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[64] W Daamen. A QUANTITATIVE ASSESSMENT ON THE DESIGN OF A RAILWAY SYSTEM , 2002 .
[65] Leon W P Peeters,et al. Cyclic Railway Timetable Optimization , 2003 .
[66] Michel Minoux,et al. Graphs and Algorithms , 1984 .
[67] Edouard Wagneur,et al. Moduloïds and pseudomodules 1. Dimension theory , 1989, Discret. Math..
[68] Bernd Heidergott,et al. Towards a (Max,+) Control Theory for Public Transportation Networks , 2001, Discret. Event Dyn. Syst..
[69] Rob M.P. Goverde,et al. PERFORMANCE EVALUATION OF NETWORK TIMETABLES USING PETER , 2002 .
[70] A. F. De Kort,et al. Train Movement Analysis at Railway Stations: Procedures & Evaluation of Wakob's Approach , 1999 .
[71] E. Mühlhans. Berechnung der Verspätungsentwicklung bei Zugfahrten , 1990 .
[72] R. Schnabel,et al. 10. Nonlinear Least Squares , 1996 .
[73] Xiaolan Xie,et al. Optimization of the number of transportation devices in a flexible manufacturing system using event graphs , 1997, IEEE Trans. Ind. Electron..
[74] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[75] S. Gaubert. Theorie des systemes lineaires dans les dioides , 1992 .
[76] Didier Dubois,et al. A linear-system-theoretic view of discrete-event processes , 1983 .
[77] J Jacobs. Reducing delays by means of computer-aided 'on-the-spot' rescheduling , 2004 .
[78] R. J. Van Egmond,et al. Railway capacity assessment, an algebraic approach , 1999 .
[79] Amir Pnueli,et al. Marked Directed Graphs , 1971, J. Comput. Syst. Sci..
[80] Subiono. On classes of min-max-plus systems and their applications , 2000 .
[81] Lex Schrijver,et al. Minimum circulation of railway stock , 1993 .
[82] Matteo Fischetti,et al. Algorithms for railway crew management , 1997, Math. Program..
[83] Ali Dasdan,et al. Experimental analysis of the fastest optimum cycle ratio and mean algorithms , 2004, TODE.
[84] J. Quadrat,et al. Numerical Computation of Spectral Elements in Max-Plus Algebra☆ , 1998 .
[85] S. Irani,et al. Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).
[86] G. A. Fries,et al. Computer Aided Railway Engineering , 1998 .
[87] J. Rice. Mathematical Statistics and Data Analysis , 1988 .
[88] M. van Leur. NS Introduces A New Generation AutomaticTrain Protection , 1970 .
[89] Paolo Toth,et al. A Survey of Optimization Models for Train Routing and Scheduling , 1998, Transp. Sci..
[90] M. den Brok,et al. VPT, A New Systems Architecture ForPlanning And Control Of Train Traffic In TheNetherlands , 1970 .
[91] J. Golan. Semirings and Affine Equations over Them: Theory and Applications , 2003 .
[92] Matteo Fischetti,et al. Crew Scheduling for Netherlands Railways , 2000 .
[93] R.M.P. Goverde,et al. IMPROVING PUNCTUALITY AND TRANSFER RELIABILITY BY RAILWAY TIMETABLE OPTIMIZATION , 1999 .
[94] Martin L. Puterman,et al. Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .
[95] Jürgen Jacobs,et al. Rechnerunterstützte Konfliktermittlung und Entscheidungsunterstützung bei der Disposition des Zuglaufs , 2003 .
[96] J. Quadrat,et al. Max-Plus Algebra and System Theory: Where We Are and Where to Go Now , 1999 .
[97] Raymond Cuninghame-Green,et al. Bases in max-algebra , 2004 .
[98] I. A. Hansen,et al. System analysis of train operations and track occupancy at railway stations , 2005 .
[99] F Makkinga,et al. AUTOMATIC CONFLICT DETECTION AND DECISION SUPPORT FOR OPTIMAL USAGE OF RAILWAY INFRASTRUCTURE , 2000 .
[100] G. S. Y. Koelemeijer,et al. ON THE BEHAVIOUR OF CLASSES OF MIN-MAX-PLUS SYSTEMS , 2003 .
[101] Michiel A. Odijk,et al. A CONSTRAINT GENERATION ALGORITHM FOR THE CONSTRUCTION OF PERIODIC RAILWAY TIMETABLES , 1996 .
[102] J. G. Braker,et al. Algorithms and Applications in Timed Discrete Event Systems , 1993 .
[103] A. Bouma,et al. Linienplanung und Simulation für öffentliche Verkehrswege in Praxis und Theorie , 1994 .
[104] Thomas Andreas Gröger,et al. Simulation der Fahrplanerstellung auf der Basis eines hierarchischen Trassenmanagements und Nachweis der Stabilität der Betriebsabwicklung , 2002 .
[105] Thomas F. Coleman,et al. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..
[106] Xiaolan Xie,et al. Optimisation of invariant criteria for event graphs , 1992 .
[107] Leo G. Kroon,et al. A Branch-and-Cut Approach for Solving Railway Line-Planning Problems , 2004, Transp. Sci..
[108] Rob M.P. Goverde,et al. Delay distributions in railway stations , 2001 .
[109] Ali Dasdan,et al. An Experimental Study of Minimum Mean Cycle Algorithms , 1998 .
[110] MengChu Zhou,et al. Tactical scheduling of rail operations: a Petri net approach , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.
[111] Erhan Kozan,et al. Modeling Train Delays in Urban Networks , 1998, Transp. Sci..
[112] Leo G. Kroon,et al. Routing trains through a railway station based on a node packing model , 2001, Eur. J. Oper. Res..
[113] J. Demitz,et al. TIMETABLE STABILITY - USING SIMULATION TO ENSURE QUALITY IN A REGULAR INTERVAL TIMETABLE , 2004 .
[114] Alexander Schrijver. Routing and timetabling by topological search , 1998 .
[115] Wil M. P. van der Aalst,et al. Analysis of railway stations by means of interval timed coloured Petri nets , 1995, Real-Time Systems.
[116] Robert E. Tarjan,et al. Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.
[117] C. Petri. Kommunikation mit Automaten , 1962 .
[118] Rob M.P. Goverde,et al. Delay propagation and process management at railway stations , 2001 .
[119] J. Mairesse. A graphical approach of the spectral theory in the (max, +) algebra , 1995, IEEE Trans. Autom. Control..
[120] Kees Roos,et al. An efficient algorithm for critical circuits and finite eigenvectors in the max-plus algebra , 1999 .
[121] Werner Weigand. Graphentheoretisches Verfahren zur Fahrplangestaltung in Transportnetzen unter Berücksichtigung von Pufferzeiten mittels interaktiver Rechentechnik , 1981 .
[122] Jörn Pachl,et al. Railway Operation and Control , 2002 .
[123] Tadao Murata,et al. Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.
[124] Jacob van der Woude,et al. Power Algorithms for (max,+)- and Bipartite (min,max,+)-Systems , 2000, Discret. Event Dyn. Syst..
[125] A. Hegyi,et al. Model Predictive Control Approach for Recovery from Delays in Railway Systems , 2002 .
[126] Phil Howlett,et al. Energy-efficient train control , 1994 .
[127] Mohideen Noordeen. Stability analysis of cyclic timetables for a highly interconnected rail network , 1996 .
[128] Joost N. Kok,et al. Genetic Improvement of Railway Timetables , 1994, PPSN.
[129] Ronald A. Howard,et al. Dynamic Programming and Markov Processes , 1960 .
[130] James H. Bookbinder,et al. Transfer Optimization in a Transit Network , 1992, Transp. Sci..
[131] P. Rousseeuw,et al. Unmasking Multivariate Outliers and Leverage Points , 1990 .
[132] P. Rietveld,et al. Coping with unreliability in public transport chains , 1999 .
[133] Richard M. Karp,et al. Parametric shortest path algorithms with an application to cyclic staffing , 1981, Discret. Appl. Math..
[134] David K. Smith. Network Flows: Theory, Algorithms, and Applications , 1994 .
[135] Ravindra B. Bapat,et al. A max version of the Perron-Frobenius theorem , 1998 .
[136] P. Dudnikov,et al. Endomorphisms of finitely generated free semimodules , 1992 .
[137] H I Andrews. Railway Traction: The Principles of Mechanical and Electrical Railway Traction , 1986 .
[138] Geert Jan Olsder,et al. The power algorithm in max algebra , 1993 .
[139] Michael R. Bussieck,et al. Discrete optimization in public rail transport , 1997, Math. Program..
[140] Richard J. Boucherie,et al. A solvable queueing network model for railway networks and its validation and applications for the Netherlands , 2002, Eur. J. Oper. Res..
[141] Walter Ukovich,et al. A Mathematical Model for Periodic Scheduling Problems , 1989, SIAM J. Discret. Math..