Engineering a passivating electric double layer for high performance lithium metal batteries

[1]  Rui Qiao,et al.  Modeling galvanostatic charge–discharge of nanoporous supercapacitors , 2021, Nature Computational Science.

[2]  M. N. Hedhili,et al.  Lithium‐Ion Desolvation Induced by Nitrate Additives Reveals New Insights into High Performance Lithium Batteries , 2021, Advanced Functional Materials.

[3]  Ping Liu,et al.  Tailoring Electrolyte Solvation for Li Metal Batteries Cycled at Ultra-Low Temperature , 2021, Nature Energy.

[4]  Kaustubh S. Panse,et al.  Three-Dimensional Molecular Mapping of Ionic Liquids at Electrified Interfaces. , 2020, ACS nano.

[5]  Jiaqi Huang,et al.  Inhibiting Solvent Co-Intercalation in Graphite Anode by Localized High-Concentration Electrolyte in Fast-Charging Batteries. , 2020, Angewandte Chemie.

[6]  W. Goddard,et al.  Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis , 2020, Nature Communications.

[7]  Pralav P. Shetty,et al.  Efficient Low-Temperature Cycling of Lithium Metal Anodes by Tailoring the Solid-Electrolyte Interphase , 2020 .

[8]  Chibueze V. Amanchukwu,et al.  Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries , 2020, Nature Energy.

[9]  Zonghai Chen,et al.  Regulating the Hidden Solvation‐Ion‐Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries , 2020, Advanced Energy Materials.

[10]  W. Schmickler Double layer theory , 2020, Journal of Solid State Electrochemistry.

[11]  Zonghai Chen,et al.  Advanced Electrolytes for Fast‐Charging High‐Voltage Lithium‐Ion Batteries in Wide‐Temperature Range , 2020, Advanced Energy Materials.

[12]  Xiaodi Ren,et al.  Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries , 2020, Advanced Functional Materials.

[13]  Rui Zhang,et al.  A Diffusion-Reaction Competition Mechanism to Tailor Lithium Deposition. , 2020, Angewandte Chemie.

[14]  Xiulin Fan,et al.  Countersolvent Electrolytes for Lithium‐Metal Batteries , 2020, Advanced Energy Materials.

[15]  Ya‐Xia Yin,et al.  Towards better Li metal anodes: Challenges and strategies , 2020 .

[16]  Jiawei Yan,et al.  Adding salt to expand voltage window of humid ionic liquids , 2020, Nature Communications.

[17]  Allen Pei,et al.  An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte , 2019, Nature Communications.

[18]  Xiulin Fan,et al.  All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents , 2019, Nature Energy.

[19]  G. Cui,et al.  Deciphering the Interface of a High‐Voltage (5 V‐Class) Li‐Ion Battery Containing Additive‐Assisted Sulfolane‐Based Electrolyte , 2019, Small Methods.

[20]  Weishan Li,et al.  Tailoring Low Temperature Performance of Lithium-ion Battery via Rational Designing Interphase on Anode. , 2019, ACS applied materials & interfaces.

[21]  Hongkyung Lee,et al.  Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions , 2019, Joule.

[22]  Ricardo Garcia,et al.  Atomic-scale mapping of hydrophobic layers on graphene and few-layer MoS2 and WSe2 in water , 2019, Nature Communications.

[23]  Yongyao Xia,et al.  High-Energy Rechargeable Metallic Lithium Battery at -70 °C Enabled by a Cosolvent Electrolyte. , 2019, Angewandte Chemie.

[24]  Xiulin Fan,et al.  Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery , 2019, Chem.

[25]  Yuki Yamada,et al.  Advances and issues in developing salt-concentrated battery electrolytes , 2019, Nature Energy.

[26]  Hongkyung Lee,et al.  High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries , 2019, ACS Energy Letters.

[27]  Jun Lu,et al.  Bridging the academic and industrial metrics for next-generation practical batteries , 2019, Nature Nanotechnology.

[28]  Ricardo Garcia,et al.  Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy. , 2018, ACS nano.

[29]  Yayuan Liu,et al.  Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode , 2018, Nature Communications.

[30]  A. Kornyshev,et al.  Theory of the Double Layer in Water-in-Salt Electrolytes. , 2018, The journal of physical chemistry letters.

[31]  Kang Xu,et al.  Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries , 2018, Chem.

[32]  K. Amine,et al.  Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries , 2018, Nature Nanotechnology.

[33]  Ji‐Guang Zhang,et al.  High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration Electrolytes , 2018, Advanced materials.

[34]  Jianming Zheng,et al.  Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries , 2018 .

[35]  Ji‐Guang Zhang,et al.  Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes , 2018 .

[36]  O. Acevedo,et al.  Revisiting OPLS Force Field Parameters for Ionic Liquid Simulations. , 2017, Journal of chemical theory and computation.

[37]  William L. Jorgensen,et al.  LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands , 2017, Nucleic Acids Res..

[38]  Tae Kyoung Kim,et al.  Liquefied gas electrolytes for electrochemical energy storage devices , 2017, Science.

[39]  P. Tarazona,et al.  Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface , 2016, Nature Communications.

[40]  Andrew Ian Duff,et al.  MEAMfit: A reference-free modified embedded atom method (RF-MEAM) energy and force-fitting code , 2015, Comput. Phys. Commun..

[41]  M. Schober,et al.  Challenges and Strategies , 2016 .

[42]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[43]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[44]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[45]  B. Laird,et al.  Evaluation of the constant potential method in simulating electric double-layer capacitors. , 2014, The Journal of chemical physics.

[46]  P. Taberna,et al.  On the dynamics of charging in nanoporous carbon-based supercapacitors. , 2014, ACS nano.

[47]  Yuki Yamada,et al.  A superconcentrated ether electrolyte for fast-charging Li-ion batteries. , 2013, Chemical communications.

[48]  Peter T Cummings,et al.  Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces. , 2012, Journal of chemical theory and computation.

[49]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[50]  D. Abraham,et al.  Positive Electrode Passivation by LiDFOB Electrolyte Additive in High-Capacity Lithium-Ion Cells , 2012 .

[51]  D. Barron,et al.  Interaction of hesperetin glucuronide conjugates with human BCRP, MRP2 and MRP3 as detected in membrane vesicles of overexpressing baculovirus-infected Sf9 cells. , 2011, Biopharmaceutics & drug disposition.

[52]  Y. Ozaki,et al.  Co-adsorption of electrolyte and protein to Ag colloid observed by surface-enhanced Raman scattering. , 2010, The Analyst.

[53]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[54]  Albert Migliori,et al.  Molecular simulation of electric double-layer capacitors based on carbon nanotube forests. , 2009, Journal of the American Chemical Society.

[55]  Orlando Acevedo,et al.  Development of OPLS-AA Force Field Parameters for 68 Unique Ionic Liquids. , 2009, Journal of chemical theory and computation.

[56]  M. Armand,et al.  Building better batteries , 2008, Nature.

[57]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[58]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[59]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[60]  M. Morita,et al.  Characteristics of Sulfolane‐Based Electrolytes for Rechargeable Lithium Batteries , 1985 .