The kinetic mechanism by which CCCP (carbonyl cyanidem-Chlorophenylhydrazone) transports protons across membranes

[1]  S. Hladky,et al.  Transient currents carried by the uncoupler, carbonyl cyanide m-chlorophenylhydrazone. , 1983, Biochimica et biophysica acta.

[2]  R. Benz,et al.  The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). , 1983, Biophysical journal.

[3]  R. Tsien,et al.  Ion repulsion within membranes. , 1982, Biophysical journal.

[4]  H. Terada,et al.  The interaction of highly active uncouplers with mitochondria. , 1981, Biochimica et biophysica acta.

[5]  R E Sjogren,et al.  Bacterial survival in a dilute environment , 1981, Applied and environmental microbiology.

[6]  J. Dilger,et al.  Transport of protons across membranes by weak acids. , 1980, Physiological reviews.

[7]  A. K. Solomon,et al.  Kinetics of phloretin binding to phosphatidylcholine vesicle membranes , 1980, The Journal of general physiology.

[8]  J. Dilger,et al.  Proton transport through membranes induced by weak acids: A study of two substituted benzimidazoles , 1979, The Journal of Membrane Biology.

[9]  A. Peterkofsky,et al.  Escherichia coli adenylate cyclase complex: regulation by the proton electrochemical gradient. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A. Lee,et al.  Effects of charged drugs on the phase transition temperatures of phospholipid bilayers. , 1978, Biochimica et biophysica acta.

[11]  C. Tanford,et al.  The hydrophobic effect and the organization of living matter. , 1978, Science.

[12]  S. McLaughlin,et al.  The kinetic mechanism of action of an uncoupler of oxidative phosphorylation , 1977, The Journal of Membrane Biology.

[13]  R. D. Carlson,et al.  A simple method for the preparation of homogeneous phospholipid vesicles. , 1977, Biochemistry.

[14]  R. Benz,et al.  Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies. , 1976, Biochimica et biophysica acta.

[15]  P. Bhattacharyya,et al.  ATP-dependent calcium transport in isolated membrane vesicles from Azotobacter vinelandii. , 1976, The Journal of biological chemistry.

[16]  H. Kaback,et al.  The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[17]  I. Tinsley,et al.  A simple, sensitive method for lipid phosphorus , 1974, Lipids.

[18]  S. Hladky The energy barriers to ion transport by nonactin across thin lipid membranes. , 1974, Biochimica et biophysica acta.

[19]  C. Mead,et al.  A barrier model for current flow in lipid bilayer membranes , 1973, The Journal of Membrane Biology.

[20]  D. Haydon,et al.  An Introduction to the Principles of Surface Chemistry , 1973 .

[21]  O. H. Leblanc,et al.  The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcyanidem-chlorophenylhydrazone , 1971, The Journal of Membrane Biology.

[22]  E A Liberman,et al.  Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. , 1970, Biochimica et biophysica acta.

[23]  V. Skulachev,et al.  Mechanism of Coupling of Oxidative Phosphorylation and the Membrane Potential of Mitochondria , 1969, Nature.

[24]  T. E. Thompson,et al.  Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[25]  V. Skulachev,et al.  Proton Conductors in the Respirator Chain and Artificial Membranes , 1967, Nature.

[26]  P. Heytler uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. , 1963, Biochemistry.

[27]  W. Prichard,et al.  A new class of uncoupling agents--carbonyl cyanide phenylhydrazones. , 1962, Biochemical and biophysical research communications.

[28]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[29]  S. McLaughlin,et al.  Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes , 2005, The Journal of Membrane Biology.

[30]  D. Benos,et al.  Changes in interfacial potentials induced by carbonylcyanide phenylhydrazone uncouplers: possible role in inhibition of mitochondrial oxygen consumption and other transport processes. , 1984, Membrane biochemistry.

[31]  S. McLaughlin Electrostatic Potentials at Membrane-Solution Interfaces , 1977 .

[32]  F. Harold Membranes and Energy Transduction in Bacteria1 1Abbreviations: Δψ, membrane potential; ΔpH, pH gradient; Δp, proton-motive force. These are related by: Δp = Δψ - (23RT/F) ΔpH ≅ Δψ - 60 ΔpH. ANS, l-anilino-8-naphthalene sulfonate; DCCD, N, N'-dicyclohexylcarbodiimide; CCCP, carbonylcyanide-m-chloroph , 1977 .

[33]  M. W. Hill,et al.  Preparation and Use of Liposomes as Models of Biological Membranes , 1974 .