ACO with automatic parameter selection for a scheduling problem with a group cumulative constraint

We consider a RCPSP (resource constrained project scheduling problem), the goal of which is to schedule jobs on machines in order to minimise job tardiness. This problem comes from a real industrial application, and it requires an additional constraint which is a generalisation of the classical cumulative constraint: jobs are partitioned into groups, and the number of active groups must never exceeds a given capacity (where a group is active when some of its jobs have started while some others are not yet completed). We first study the complexity of this new constraint. Then, we describe an Ant Colony Optimisation algorithm to solve our problem, and we compare three different pheromone structures for it. We study the influence of parameters on the solving process, and show that it varies from an instance to another. Hence, we identify a subset of parameter settings with complementary strengths and weaknesses, and we use a per-instance algorithm selector in order to select the best setting for each new instance to solve. We experimentally compare our approach with a tabu search approach and an exact approach on a data set coming from our industrial application.

[1]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[2]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[3]  Pierre Ouellet,et al.  Time-Table Extended-Edge-Finding for the Cumulative Constraint , 2013, CP.

[4]  Komarudin,et al.  Parameter tuning for ant colony optimization: A review , 2008, 2008 International Conference on Computer and Communication Engineering.

[5]  Fred W. Glover,et al.  New advances and applications of combining simulation and optimization , 1996, WSC.

[6]  Nicolas Beldiceanu,et al.  Extending CHIP in order to solve complex scheduling and placement problems , 1993, JFPL.

[7]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[8]  J. M. J. Schutten,et al.  List scheduling revisited , 1996, Oper. Res. Lett..

[9]  Patrick Albert,et al.  An ACO-Based Reactive Framework for Ant Colony Optimization: First Experiments on Constraint Satisfaction Problems , 2009, LION.

[10]  Jun Zhang,et al.  Automatically configuring ACO using multilevel ParamILS to solve transportation planning problems with underlying weighted networks , 2015, Swarm Evol. Comput..

[11]  J. P. Kelly,et al.  New advances and applications of combining simulation and optimization , 1996, Proceedings Winter Simulation Conference.

[12]  Hartmut Schmeck,et al.  Ant colony optimization for resource-constrained project scheduling , 2000, IEEE Trans. Evol. Comput..

[13]  Thomas Stützle,et al.  Automatic Configuration of Multi-Objective ACO Algorithms , 2010, ANTS Conference.

[14]  Dirk Van Oudheusden,et al.  Automated Parameterisation of a Metaheuristic for the Orienteering Problem , 2008, Adaptive and Multilevel Metaheuristics.

[15]  Rainer Kolisch,et al.  Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem , 2000, Eur. J. Oper. Res..

[16]  Moacir Godinho Filho,et al.  Literature review regarding Ant Colony Optimization applied to scheduling problems: Guidelines for implementation and directions for future research , 2013, Eng. Appl. Artif. Intell..

[17]  Lars Kotthoff,et al.  Algorithm Selection for Combinatorial Search Problems: A Survey , 2012, AI Mag..

[18]  Philippe Baptiste,et al.  Redundant cumulative constraints to compute preemptive bounds , 2018, Discret. Appl. Math..

[19]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[20]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[21]  Klaus Neumann,et al.  Project scheduling with inventory constraints , 2003, Math. Methods Oper. Res..

[22]  Thomas Stützle,et al.  Improvements on the Ant-System: Introducing the MAX-MIN Ant System , 1997, ICANNGA.

[23]  Michael Pinedo,et al.  Scheduling jobs on parallel machines with sequence-dependent setup times , 1997, Eur. J. Oper. Res..

[24]  Oscar Castillo,et al.  Dynamic Fuzzy Logic Parameter Tuning for ACO and Its Application in TSP Problems , 2013, Recent Advances on Hybrid Intelligent Systems.

[25]  Lars Kotthoff,et al.  LLAMA: Leveraging Learning to Automatically Manage Algorithms , 2013, ArXiv.

[26]  Jae-Min Yu,et al.  A tabu search algorithm for unrelated parallel machine scheduling with sequence- and machine-dependent setups: minimizing total tardiness , 2013 .

[27]  LaboriePhilippe,et al.  IBM ILOG CP optimizer for scheduling , 2018 .

[28]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[29]  Petr Vilím,et al.  IBM ILOG CP optimizer for scheduling , 2018, Constraints.

[30]  Michael Guntsch,et al.  Applying Population Based ACO to Dynamic Optimization Problems , 2002, Ant Algorithms.