The Perception of Auditory Motion

The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception.

[1]  D W Grantham,et al.  Detection and discrimination of simulated motion of auditory targets in the horizontal plane. , 1986, The Journal of the Acoustical Society of America.

[2]  E. A. Petropavlovskaia,et al.  Discrimination of auditory motion patterns: The mismatch negativity study , 2012, Neuropsychologia.

[3]  Hans-Jochen Heinze,et al.  A movement-sensitive area in auditory cortex , 1999, Nature.

[4]  L D Rosenblum,et al.  Auditory looming perception: influences on anticipatory judgments. , 1992, Perception.

[5]  D. Grantham,et al.  Auditory motion aftereffects , 1979, Perception & psychophysics.

[6]  D R Perrott,et al.  Discrimination of moving events which accelerate or decelerate over the listening interval. , 1993, The Journal of the Acoustical Society of America.

[7]  S. Ewert,et al.  Perceptual Sensitivity to High-Frequency Interaural Time Differences Created by Rustling Sounds , 2012, Journal of the Association for Research in Otolaryngology.

[8]  P M Hofman,et al.  Spectro-temporal factors in two-dimensional human sound localization. , 1998, The Journal of the Acoustical Society of America.

[9]  Gregory Hickok,et al.  An event-related fMRI study of auditory motion perception: No evidence for a specialized cortical system , 2007, Brain Research.

[10]  W. Ehrenstein,et al.  Influence of head-to-trunk position on sound lateralization , 1998, Experimental Brain Research.

[11]  W. Singer,et al.  Auditory motion direction encoding in auditory cortex and high‐level visual cortex , 2012, Human brain mapping.

[12]  I. G. Andreeva,et al.  Auditory aftereffects of approaching and withdrawing sound sources: Dependence on the trajectory and location of adapting stimuli , 2013, Journal of Evolutionary Biochemistry and Physiology.

[13]  J. Lewald,et al.  Horizontal and vertical effects of eye-position on sound localization , 2006, Hearing Research.

[14]  D P Phillips,et al.  Spatial and temporal factors in auditory saltation. , 2001, The Journal of the Acoustical Society of America.

[15]  R. S. Peters The Role of the Head , 2015 .

[16]  L. Stark,et al.  Neural control of head rotation: Electromyographic evidence , 1982, Journal of the Neurological Sciences.

[17]  J M Loomis,et al.  Active localization of virtual sounds. , 1990, The Journal of the Acoustical Society of America.

[18]  Y. Cohen,et al.  Ocular tracking as a measure of auditory motion perception , 2004, Journal of Physiology-Paris.

[19]  D. Moore,et al.  Auditory Neuroscience: The Salience of Looming Sounds , 2003, Current Biology.

[20]  M. Cynader,et al.  The auditory motion aftereffect: its tuning and specificity in the spatial and frequency domains. , 2000, Perception & psychophysics.

[21]  John G. Neuhoff,et al.  An Adaptive Bias in the Perception of Looming Auditory Motion , 2001 .

[22]  W. Reichardt Movement perception in insects , 1969 .

[23]  M. Ahissar,et al.  Encoding of sound-source location and movement: activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. , 1992, Journal of neurophysiology.

[24]  K. Saberi,et al.  Minimum audible movement angles as a function of sound source trajectory. , 1990, The Journal of the Acoustical Society of America.

[25]  S Buus,et al.  Frequency selectivity in normally-hearing and hearing-impaired observers. , 1980, Journal of speech and hearing research.

[26]  A. Rees,et al.  Evidence for a sound movement area in the human cerebral cortex , 1996, Nature.

[27]  B. Peterson Current approaches and future directions to understanding control of head movement. , 2004, Progress in brain research.

[28]  William E O'Neill,et al.  Perception of auditory, visual, and egocentric spatial alignment adapts differently to changes in eye position. , 2010, Journal of neurophysiology.

[29]  D. Grantham Motion aftereffects with horizontally moving sound sources in the free field , 1989, Perception & psychophysics.

[30]  D. Grantham,et al.  Auditory spatial resolution in horizontal, vertical, and diagonal planes. , 2003, The Journal of the Acoustical Society of America.

[31]  Ewan A. Macpherson,et al.  HEAD MOTION, SPECTRAL CUES, AND WALLACH'S 'PRINCIPLE OF LEAST DISPLACEMENT' IN SOUND LOCALIZATION , 2011 .

[32]  D McAlpine,et al.  Spatial receptive fields of inferior colliculus neurons to auditory apparent motion in free field. , 2001, Journal of neurophysiology.

[33]  L. Rayleigh,et al.  XII. On our perception of sound direction , 1907 .

[34]  Gregory Hickok,et al.  Auditory Spatial and Object Processing in the Human Planum Temporale: No Evidence for Selectivity , 2010, Journal of Cognitive Neuroscience.

[35]  Bernhard U. Seeber,et al.  A New Method for Localization Studies , 2002 .

[36]  Alexander Borst,et al.  Models of motion detection , 2000, Nature Neuroscience.

[37]  Timothy L. Hubbard,et al.  Approaches to representational momentum: theories and models , 2010 .

[38]  Neil W. Roach,et al.  Distortions of perceived auditory and visual space following adaptation to motion , 2008, Experimental Brain Research.

[39]  Simon Carlile,et al.  The nature and distribution of errors in sound localization by human listeners , 1997, Hearing Research.

[40]  M. Cynader,et al.  The auditory motionaftereffect: Its tuning and specificity in the spatial and frequency domains , 2000 .

[41]  Frederic L. Wightman,et al.  The importance of head movements for localizing virtual auditory display objects , 1994 .

[42]  M. Akeroyd An Overview of the Major Phenomena of the Localization of Sound Sources by Normal-Hearing, Hearing-Impaired, and Aided Listeners , 2014, Trends in hearing.

[43]  D R Perrott,et al.  Dynamic minimum audible angle: binaural spatial acuity with moving sound sources. , 1981, The Journal of auditory research.

[44]  Marina S Dobreva,et al.  Influence of aging on human sound localization. , 2011, Journal of neurophysiology.

[45]  S. Carlile,et al.  Discrimination of sound source velocity in human listeners. , 2002, The Journal of the Acoustical Society of America.

[46]  D. M. Green,et al.  Sound localization by human listeners. , 1991, Annual review of psychology.

[47]  Marc O. Ernst,et al.  Hearing in slow-motion: Humans underestimate the speed of moving sounds , 2015, Scientific Reports.

[48]  I. Andreeva,et al.  Auditory motion aftereffects of low- and high-frequency sound stimuli , 2013, Human Physiology.

[49]  E. S. Malinina,et al.  Asymmetry and spatial specificity of auditory aftereffects following adaptation to signals simulating approach and withdrawal of sound sources , 2014, Journal of Evolutionary Biochemistry and Physiology.

[50]  Kourosh Saberi,et al.  MINIMUM AUDIBLE ANGLES FOR HORIZONTAL, VERTICAL, AND OBLIQUE ORIENTATIONS : LATERAL AND DORSAL PLANES , 1991 .

[51]  Michael F. Neelon,et al.  The temporal growth and decay of the auditory motion aftereffect. , 2004, The Journal of the Acoustical Society of America.

[52]  R. Rübsamen,et al.  Free-field study on auditory localization and discrimination performance in older adults , 2014, Experimental Brain Research.

[53]  Simon Carlile,et al.  Discrimination Contours for Moving Sounds Reveal Duration and Distance Cues Dominate Auditory Speed Perception , 2014, PloS one.

[54]  D. Pralong,et al.  The location-dependent nature of perceptually salient features of the human head-related transfer functions. , 1994, The Journal of the Acoustical Society of America.

[55]  Simon Carlile,et al.  Effects of Virtual Speaker Density and Room Reverberation on Spatiotemporal Thresholds of Audio-Visual Motion Coherence , 2014, PloS one.

[56]  Simon Carlile,et al.  Compression of auditory space during rapid head turns , 2008, Proceedings of the National Academy of Sciences.

[57]  Simon Carlile,et al.  The effect of velocity on auditory representational momentum. , 2014, The Journal of the Acoustical Society of America.

[58]  J. Saunders,et al.  Sensitivity to simulated directional sound motion in the rat primary auditory cortex. , 1999, Journal of neurophysiology.

[59]  B. Shinn-Cunningham,et al.  Tori of confusion: binaural localization cues for sources within reach of a listener. , 2000, The Journal of the Acoustical Society of America.

[60]  D. Perrott,et al.  Minimum auditory movement angle: binaural localization of moving sound sources. , 1977, The Journal of the Acoustical Society of America.

[61]  W H Ehrenstein,et al.  Auditory Aftereffects following Simulated Motion Produced by Varying Interaural Intensity or Time , 1994, Perception.

[62]  Anderson Tr,et al.  The accuracy of absolute localization judgments for speech stimuli. , 1995 .

[63]  Jörg Lewald,et al.  Cortical processing of change in sound location: Smooth motion versus discontinuous displacement , 2012, Brain Research.

[64]  D McAlpine,et al.  Responses of neurons in the inferior colliculus to dynamic interaural phase cues: evidence for a mechanism of binaural adaptation. , 2000, Journal of neurophysiology.

[65]  J. A. Altman,et al.  Discrimination of perceived movement velocity for fused auditory image in dichotic stimulation. , 1977, The Journal of the Acoustical Society of America.

[66]  T. Hubbard Representational momentum and related displacements in spatial memory: A review of the findings , 2005, Psychonomic bulletin & review.

[67]  F L Wightman,et al.  Headphone simulation of free-field listening. II: Psychophysical validation. , 1989, The Journal of the Acoustical Society of America.

[68]  A. V. van Opstal,et al.  Binaural weighting of pinna cues in human sound localization , 2003, Experimental Brain Research.

[69]  M. Cynader,et al.  Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms , 2005, Experimental Brain Research.

[70]  John G. Neuhoff,et al.  Perceptual bias for rising tones , 1998, Nature.

[71]  A. Mills On the minimum audible angle , 1958 .

[72]  Sung Hwa Hong,et al.  What Is Temporal Fine Structure and Why Is It Important? , 2014, Korean journal of audiology.

[73]  R A Lutfi,et al.  Correlational analysis of acoustic cues for the discrimination of auditory motion. , 1999, The Journal of the Acoustical Society of America.

[74]  W. Owen Brimijoin,et al.  The moving minimum audible angle is smaller during self motion than during source motion , 2014, Front. Neurosci..

[75]  J. Blauert Spatial Hearing: The Psychophysics of Human Sound Localization , 1983 .

[76]  R. Humanski,et al.  Binaural and Monaural Localization of Sound in Two-Dimensional Space , 1990, Perception.

[77]  A.R.D. Thornton Foundations of modern auditory theory: Volume 2 1972. Edited by J. V. Tobias. 508 pp. New York: Academic Press, Inc. $24.00 , 1972 .

[78]  J. Rauschecker,et al.  Perception of Sound-Source Motion by the Human Brain , 2002, Neuron.

[79]  Timothy D. Griffiths,et al.  Spatial and temporal auditory processing deficits following right hemisphere infarction , 1997 .

[80]  A. Vanlierde,et al.  Specific activation of the V5 brain area by auditory motion processing: an fMRI study. , 2005, Brain research. Cognitive brain research.

[81]  J. Lewald,et al.  Processing of auditory motion in inferior parietal lobule: Evidence from transcranial magnetic stimulation , 2011, Neuropsychologia.

[82]  H. Wallach,et al.  The role of head movements and vestibular and visual cues in sound localization. , 1940 .

[83]  M. W. Spitzer,et al.  Responses of inferior colliculus neurons to time-varying interaural phase disparity: effects of shifting the locus of virtual motion. , 1993, Journal of neurophysiology.

[84]  Erich Seifritz,et al.  Looming sounds as warning signals: the function of motion cues. , 2009, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[85]  Perrott Dr,et al.  Dynamic minimum audible angle: binaural spatial acuity with moving sound sources. , 1981 .

[86]  S. Carlile The plastic ear and perceptual relearning in auditory spatial perception , 2014, Front. Neurosci..

[87]  A.R.D. Thornton,et al.  Foundations of Modern Auditory Theory , 1970 .

[88]  Michael S. Gordon,et al.  Spectral information for detection of acoustic time to arrival , 2013, Attention, Perception, & Psychophysics.

[89]  Franco Lepore,et al.  Positional, directional and speed selectivities in the primary auditory cortex of the cat , 1997, Hearing Research.

[90]  M. Cynader,et al.  Neurons in cat primary auditory cortex sensitive to correlates of auditory motion in three-dimensional space , 2005, Experimental Brain Research.

[91]  B. Papsin,et al.  The effect of aging on horizontal plane sound localization. , 2000, The Journal of the Acoustical Society of America.

[92]  T Z Strybel,et al.  A comparison of the effects of spatial separation on apparent motion in the auditory and visual modalities , 1990, Perception & psychophysics.

[93]  John G. Neuhoff,et al.  Neural Processing of Auditory Looming in the Human Brain , 2002, Current Biology.

[94]  M. Agaeva,et al.  Velocity discrimination of auditory image moving in vertical plane , 2004, Hearing Research.

[95]  W. O. Brimijoin,et al.  The role of head movements and signal spectrum in an auditory front/back illusion , 2012, i-Perception.

[96]  Christoph M. Michel,et al.  Cortical Motion Deafness , 2004, Neuron.

[97]  Simon R. Oldfield,et al.  Acuity of Sound Localisation: A Topography of Auditory Space. III. Monaural Hearing Conditions , 1986, Perception.

[98]  Joyce Vliegen,et al.  Dynamic Sound Localization during Rapid Eye-Head Gaze Shifts , 2004, The Journal of Neuroscience.

[99]  R. Gilkey,et al.  Sound localization in noise: the effect of signal-to-noise ratio. , 1996, The Journal of the Acoustical Society of America.

[100]  H. Wagner,et al.  Principles of acoustic motion detection in animals and man , 1997, Trends in Neurosciences.

[101]  C. Guastavino,et al.  Upper limits of auditory rotational motion perception. , 2010, The Journal of the Acoustical Society of America.

[102]  D R Perrott,et al.  Minimum audible angle thresholds for sources varying in both elevation and azimuth. , 1990, The Journal of the Acoustical Society of America.

[103]  J R Lackner,et al.  Gravitoinertial force magnitude and direction influence head-centric auditory localization. , 2001, Journal of neurophysiology.

[104]  P PIALOUX,et al.  [The external ear]. , 1955, Les Annales d'oto-laryngologie.

[105]  D. M. Green,et al.  Directional sensitivity of sound-pressure levels in the human ear canal. , 1989, The Journal of the Acoustical Society of America.

[106]  Nikos K. Logothetis,et al.  Auditory looming perception in rhesus monkeys , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Simon Carlile,et al.  Spectral information in sound localization. , 2005, International review of neurobiology.

[108]  William E O'Neill,et al.  Auditory Spatial Perception Dynamically Realigns with Changing Eye Position , 2007, The Journal of Neuroscience.

[109]  C Witton,et al.  Spatial and temporal auditory processing deficits following right hemisphere infarction. A psychophysical study. , 1997, Brain : a journal of neurology.

[110]  Katrin Krumbholz,et al.  Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. , 2007, Journal of neurophysiology.

[111]  D. Perrott,et al.  Minimum audible movement angle: marking the end points of the path traveled by a moving sound source. , 1989, The Journal of the Acoustical Society of America.

[112]  T Z Strybel,et al.  Auditory apparent motion in the free field: The effects of stimulus duration and separation , 1992, Perception & psychophysics.

[113]  Simon Carlile,et al.  THE PHYSICAL AND PSYCHOPHYSICAL BASIS OF SOUND LOCALIZATION , 1996 .

[114]  J. C. Middlebrooks,et al.  Two-dimensional sound localization by human listeners. , 1990, The Journal of the Acoustical Society of America.

[115]  T. Anderson,et al.  Binaural and spatial hearing in real and virtual environments , 1997 .

[116]  Simon Carlile,et al.  Sensitivity to Auditory Velocity Contrast , 2016, Scientific reports.

[117]  C. Guastavino,et al.  Auditory velocity discrimination in the horizontal plane at very high velocities , 2014, Hearing Research.

[118]  M W Spitzer,et al.  Interaural phase coding in auditory midbrain: influence of dynamic stimulus features. , 1991, Science.

[119]  Jörg Lewald,et al.  Representational Momentum in Spatial Hearing , 2004, Perception.

[120]  J. A. Altman,et al.  Are there neurons detecting direction of sound source motion? , 1968, Experimental neurology.

[121]  J. Harris,et al.  Monaural-binaural minimum audible angles for a moving sound source. , 1971, Journal of speech and hearing research.

[122]  U. Firzlaff,et al.  Cortical representation of acoustic motion in the Rufous Horseshoe bat, Rhinolophus rouxi , 2001, The European journal of neuroscience.

[123]  Barbara Shinn-Cunningham,et al.  Accurate Sound Localization in Reverberant Environments Is Mediated by Robust Encoding of Spatial Cues in the Auditory Midbrain , 2009, Neuron.

[124]  W. O. Brimijoin,et al.  The Contribution of Head Movement to the Externalization and Internalization of Sounds , 2013, PloS one.

[125]  D. Perrott,et al.  Minimum Audible Movement Angle as a Function of the Azimuth and Elevation of the Source , 1992, Human factors.

[126]  E. S. Malinina Perception of approaching and withdrawing sound sources after exposure to broadband noise: The importance of spatial domain , 2014, Journal of Evolutionary Biochemistry and Physiology.

[127]  D. Grantham Adaptation to auditory motion in the horizontal plane: Effect of prior exposure to motion on motion detectability , 1992, Perception & psychophysics.

[128]  R H Gilkey,et al.  The accuracy of absolute localization judgments for speech stimuli. , 1995, Journal of vestibular research : equilibrium & orientation.

[129]  Simon Carlile,et al.  Distortions of auditory space during rapid head turns , 2008, Experimental Brain Research.

[130]  Wayne L. Neale,et al.  The effect of burst duration, interstimulus onset interval, and loudspeaker arrangement on auditory apparent motion in the free field. , 1994, The Journal of the Acoustical Society of America.

[131]  H H Goossens,et al.  Influence of head position on the spatial representation of acoustic targets. , 1999, Journal of neurophysiology.

[132]  R E Beitel,et al.  Acoustic pursuit of invisible moving targets by cats. , 1999, The Journal of the Acoustical Society of America.

[133]  Douglas S. Brungart,et al.  Effects of Headtracker Latency in Virtual Audio Displays , 2006 .

[134]  I. Pollack,et al.  Effect of head movement on the localization of sounds in the equatorial plane , 1967 .

[135]  C Witton,et al.  Sound movement detection deficit due to a brainstem lesion. , 1997, Journal of neurology, neurosurgery, and psychiatry.

[136]  I. G. Andreeva,et al.  Auditory motion aftereffects of approaching and withdrawing sound sources , 2010, Human Physiology.

[137]  Eric I Knudsen,et al.  Dynamic shifts in the owl's auditory space map predict moving sound location , 2006, Nature Neuroscience.

[138]  T. Yin,et al.  Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. , 1983, Journal of neurophysiology.

[139]  M. Corballis,et al.  Perception of stationary and moving sound following unilateral cortectomy , 2009, Neuropsychologia.

[140]  W. O'Neill,et al.  Auditory motion induces directionally dependent receptive field shifts in inferior colliculus neurons. , 1998, Journal of neurophysiology.

[141]  Joseph Peterson The nature and probable origin of binaural beats. , 1916 .

[142]  E. A. Petropavlovskaia,et al.  How does mismatch negativity reflect auditory motion? , 2010, Hearing Research.

[143]  E. Shaw,et al.  External-ear acoustic models with simple geometry. , 1968, The Journal of the Acoustical Society of America.

[144]  Gregory Hickok,et al.  Human cortical auditory motion areas are not motion selective , 2004, Neuroreport.

[145]  J Lewald,et al.  Vestibular influence on human auditory space perception. , 2000, Journal of neurophysiology.

[146]  Sungyoung Kim,et al.  THE 'PHANTOM WALKER' ILLUSION: EVIDENCE FOR THE DOMINANCE OF DYNAMIC INTERAURAL OVER SPECTRAL DIRECTIONAL CUES DURING WALKING , 2011 .

[147]  Shuichi Sakamoto,et al.  Compression of Auditory Space during Forward Self-Motion , 2012, PloS one.

[148]  Altman Ja,et al.  Psychophysical Characteristics of the Auditory Image Movement Perception During Dichotic Stimulation , 1988 .

[149]  Constantine Trahiotis,et al.  How sensitivity to ongoing interaural temporal disparities is affected by manipulations of temporal features of the envelopes of high-frequency stimuli. , 2009, The Journal of the Acoustical Society of America.

[150]  Claudia Freigang,et al.  A comparison of visual and auditory representational momentum in spatial tasks , 2013, Attention, Perception, & Psychophysics.

[151]  J A Altman,et al.  Psychophysical characteristics of the auditory image movement perception during dichotic stimulation. , 1988, The International journal of neuroscience.

[152]  Werner Reichardt,et al.  Processing of optical data by organisms and by machines , 1969 .

[153]  Michael F. Neelon,et al.  The effect of trajectory on the auditory motion aftereffect , 2003, Hearing Research.

[154]  S. Perrett,et al.  The effect of head rotations on vertical plane sound localization. , 1997, The Journal of the Acoustical Society of America.

[155]  Stefan Kerber,et al.  Sound Localization in Noise by Normal-Hearing Listeners and Cochlear Implant Users , 2012, Ear and hearing.

[156]  I. G. Andreeva,et al.  The auditory aftereffects of radial sound source motion with different velocities , 2011, Human Physiology.

[157]  Asif A Ghazanfar,et al.  Looming Biases in Monkey Auditory Cortex , 2007, The Journal of Neuroscience.

[158]  F L Wightman,et al.  Resolution of front-back ambiguity in spatial hearing by listener and source movement. , 1999, The Journal of the Acoustical Society of America.

[159]  Simon Carlile,et al.  Head Tracking of Auditory, Visual, and Audio-Visual Targets , 2016, Front. Neurosci..