A liquid medium annealing strategy for highly [041]/[141]-oriented planar antimony sulfide solar cells with 7.23% efficiency

[1]  Shuying Cheng,et al.  Efficient All‐Inorganic Sb2S3 Solar Cells with Matched Energy Levels Using Sb2Se3 as Hole Transport Layers , 2021, Solar RRL.

[2]  Jianmin Li,et al.  Zn(O,S) Buffer Layer for in Situ Hydrothermal Sb2S3 Planar Solar Cells. , 2021, ACS applied materials & interfaces.

[3]  Limei Lin,et al.  Front and Back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S, Se)3 solar cells by using FTO/SnO2 and carbon , 2020 .

[4]  Xuanhua Li,et al.  Synergistic effect through the introduction of inorganic zinc halide in the interface of TiO2 and Sb2S3 for high-performance Sb2S3 planar thin film solar cell. , 2020, ACS applied materials & interfaces.

[5]  M. Green,et al.  Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency , 2020, Nature Energy.

[6]  Shin Woei Leow,et al.  In Situ Growth of [hk1]‐Oriented Sb2S3 for Solution‐Processed Planar Heterojunction Solar Cell with 6.4% Efficiency , 2020, Advanced Functional Materials.

[7]  Usman Ali Shah,et al.  Controllable orientations for Sb2S3 solar cells by vertical VTD method , 2020, Progress in Photovoltaics: Research and Applications.

[8]  Shiyou Chen,et al.  Intrinsic Defect Limit to the Electrical Conductivity and a Two‐Step p‐Type Doping Strategy for Overcoming the Efficiency Bottleneck of Sb 2 S 3 ‐Based Solar Cells , 2020 .

[9]  Xuanhua Li,et al.  Solution processed Sb2S3 planar thin film solar cell of conversion efficiency 6.9% at open circuit voltage 0.7 V achieved via surface passivation by SbCl3 interface layer. , 2019, ACS applied materials & interfaces.

[10]  T. Minemoto,et al.  Examination of Relationship between Urbach Energy and Open-Circuit Voltage Deficit of Flexible Cu(In,Ga)Se2 Solar Cell for Its Improved Photovoltaic Performance , 2019, ACS Applied Energy Materials.

[11]  Jiang Tang,et al.  Orientation Engineering in Low‐Dimensional Crystal‐Structural Materials via Seed Screening , 2019, Advanced materials.

[12]  Usman Ali Shah,et al.  Efficient Copper‐Doped Antimony Sulfide Thin‐Film Solar Cells via Coevaporation Method , 2019, Solar RRL.

[13]  Jiang Tang,et al.  Quasiepitaxy Strategy for Efficient Full‐Inorganic Sb2S3 Solar Cells , 2019, Advanced Functional Materials.

[14]  Kang-Pil Kim,et al.  Efficient TiO2 Surface Treatment Using Cs2CO3 for Solution-Processed Planar-Type Sb2S3 Solar Cells , 2019, Nanoscale Research Letters.

[15]  S. Nishiwaki,et al.  Bandgap of thin film solar cell absorbers: A comparison of various determination methods , 2019, Thin Solid Films.

[16]  Jianhua Xu,et al.  Comprehensive understanding of heat-induced degradation of triple-cation mixed halide perovskite for a robust solar cell , 2018, Nano Energy.

[17]  T. Chen,et al.  Alkali Metals Doping for High-Performance Planar Heterojunction Sb2 S3 Solar Cells , 2018, Solar RRL.

[18]  Junsheng Yu,et al.  Enhanced Photovoltaic Properties in Sb2S3 Planar Heterojunction Solar Cell with a Fast Selenylation Approach , 2018, Nanoscale Research Letters.

[19]  Shangfeng Yang,et al.  n-Type Doping of Sb2S3 Light-Harvesting Films Enabling High-Efficiency Planar Heterojunction Solar Cells. , 2018, ACS applied materials & interfaces.

[20]  Julius M. Mwabora,et al.  Enhanced performance of Sb2S3 mesoscopic sensitized solar cells employing TiO2:Nb compact layer , 2018, Journal of Materials Science: Materials in Electronics.

[21]  T. Chen,et al.  V2O5 as Hole Transporting Material for Efficient All Inorganic Sb2S3 Solar Cells. , 2018, ACS applied materials & interfaces.

[22]  Jiang Tang,et al.  Postsurface Selenization for High Performance Sb2S3 Planar Thin Film Solar Cells , 2017 .

[23]  H. Sirringhaus,et al.  Limits for Recombination in a Low Energy Loss Organic Heterojunction. , 2016, ACS nano.

[24]  Jiang Tang,et al.  Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries , 2015, Nature Photonics.

[25]  Zhuoying Chen,et al.  Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells , 2015, Scientific Reports.

[26]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[27]  P. K. Nair,et al.  Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation , 2014 .

[28]  Dong Uk Lee,et al.  Highly Improved Sb2S3 Sensitized‐Inorganic–Organic Heterojunction Solar Cells and Quantification of Traps by Deep‐Level Transient Spectroscopy , 2014 .

[29]  S. Ramanathan,et al.  Variations of ionization potential and electron affinity as a function of surface orientation: The case of orthorhombic SnS , 2014 .

[30]  S. Mourdikoudis,et al.  Oleylamine in Nanoparticle Synthesis , 2013 .

[31]  K. Tennakone,et al.  TiO2 Surface Treatment Effects by Mg2+, Ba2+, and Al3+ on Sb2S3 Extremely Thin Absorber Solar Cells , 2012 .

[32]  I. Bello,et al.  Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions , 2012 .

[33]  M. Nair,et al.  Antimony Sulfide Absorbers in Solar Cells , 2011 .

[34]  Md. K. Nazeeruddin,et al.  High-performance nanostructured inorganic-organic heterojunction solar cells. , 2010, Nano letters.

[35]  P. K. Nair,et al.  Solar cells with Sb2S3 absorber films , 2009 .

[36]  J. Haber,et al.  Structural and optical properties of amorphous and crystalline antimony sulfide thin-films , 2007 .

[37]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[38]  A. Kolobov,et al.  Photo-induced ring-to-chain conversion in as-evaporated films of amorphous selenium , 1998 .

[39]  R. Bube Trap Density Determination by Space‐Charge‐Limited Currents , 1962 .