New star discrepancy bounds for $$(t,m,s)$$-nets and $$(t,s)$$-sequences
暂无分享,去创建一个
[1] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[2] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[3] Wolfgang Ch. Schmid,et al. MinT: A Database for Optimal Net Parameters , 2006 .
[4] Christiane Lemieux,et al. Corrigendum to: "Improvements on the star discrepancy of (t,s)-sequences" (Acta Arith. 154 (2012), 61-78) , 2013 .
[5] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[6] M. Lacey,et al. On the Small Ball Inequality in All Dimensions , 2007, 0705.4619.
[7] Harald Niederreiter,et al. Low-discrepancy sequences using duality and global function fields , 2007 .
[8] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[9] Pierre L'Ecuyer,et al. Monte Carlo and Quasi-Monte Carlo Methods 2008 , 2009 .
[10] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[11] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[12] K. F. Roth. On irregularities of distribution , 1954 .
[13] Peter Kritzer,et al. A best possible upper bound on the star discrepancy of (t, m, 2)-nets , 2006, Monte Carlo Methods Appl..
[14] Harald Niederreiter,et al. Quasirandom points and global function fields , 1996 .
[15] Wolfgang M. Schmidt,et al. Irregularities of distribution. VIII , 1974 .
[16] Christiane Lemieux,et al. Extensions of Atanassov’s methods for Halton sequences , 2012 .
[17] V. Ostromoukhov. Recent Progress in Improvement of Extreme Discrepancy and Star Discrepancy of One-Dimensional Sequences , 2009 .
[18] Harald Niederreiter,et al. Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .
[19] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[20] L. D. Clerck,et al. A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley , 1986 .
[21] Friedrich Pillichshammer. Improved upper bounds for the star discrepancy of digital nets in dimension 3 , 2003 .
[22] Christiane Lemieux,et al. Improvements on the star discrepancy of (t,s)-sequences , 2012 .
[23] Dimitri P. Bertsekas,et al. A Quasi Monte Carlo Method for Large-Scale Inverse Problems , 2012 .
[24] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[25] G. Leobacher,et al. (t, m, s)-Nets and (t, s)-Sequences , 2014 .
[26] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[27] H. Faure,et al. On the star-discrepancy of generalized Hammersley sequences in two dimensions , 1986 .
[28] Peter Kritzer. On the Star Discrepancy of Digital Nets and Sequences in Three Dimensions , 2006 .
[29] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[30] Robert Béjian. Minoration de la discrépance d'une suite quelconque sur T , 1982 .
[31] Shu Tezuka,et al. Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.
[32] H. Niederreiter,et al. Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .
[33] Peter Kritzer,et al. Star discrepancy estimates for digital (t, m, 2)-nets and digital (t, 2) -sequences over Z2 , 2005 .
[34] S. Hansen. Rational Points on Curves over Finite Fields , 1995 .
[35] Peter Kritzer,et al. Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences , 2006, J. Complex..
[36] Minoration de discrépance en dimension deux , 1996 .
[37] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .