New star discrepancy bounds for $$(t,m,s)$$-nets and $$(t,s)$$-sequences

In this paper, we derive new general upper bounds on the star discrepancy of $$(t,m,s)$$-nets and $$(t,s)$$-sequences. These kinds of point sets are among the most widely used in quasi-Monte Carlo methods for numerical integration. By our new results, we improve on previous discrepancy bounds and prove a conjecture stated by the second author in an earlier paper.

[1]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[2]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[3]  Wolfgang Ch. Schmid,et al.  MinT: A Database for Optimal Net Parameters , 2006 .

[4]  Christiane Lemieux,et al.  Corrigendum to: "Improvements on the star discrepancy of (t,s)-sequences" (Acta Arith. 154 (2012), 61-78) , 2013 .

[5]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[6]  M. Lacey,et al.  On the Small Ball Inequality in All Dimensions , 2007, 0705.4619.

[7]  Harald Niederreiter,et al.  Low-discrepancy sequences using duality and global function fields , 2007 .

[8]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[9]  Pierre L'Ecuyer,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2008 , 2009 .

[10]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[11]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[12]  K. F. Roth On irregularities of distribution , 1954 .

[13]  Peter Kritzer,et al.  A best possible upper bound on the star discrepancy of (t, m, 2)-nets , 2006, Monte Carlo Methods Appl..

[14]  Harald Niederreiter,et al.  Quasirandom points and global function fields , 1996 .

[15]  Wolfgang M. Schmidt,et al.  Irregularities of distribution. VIII , 1974 .

[16]  Christiane Lemieux,et al.  Extensions of Atanassov’s methods for Halton sequences , 2012 .

[17]  V. Ostromoukhov Recent Progress in Improvement of Extreme Discrepancy and Star Discrepancy of One-Dimensional Sequences , 2009 .

[18]  Harald Niederreiter,et al.  Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .

[19]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[20]  L. D. Clerck,et al.  A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley , 1986 .

[21]  Friedrich Pillichshammer Improved upper bounds for the star discrepancy of digital nets in dimension 3 , 2003 .

[22]  Christiane Lemieux,et al.  Improvements on the star discrepancy of (t,s)-sequences , 2012 .

[23]  Dimitri P. Bertsekas,et al.  A Quasi Monte Carlo Method for Large-Scale Inverse Problems , 2012 .

[24]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[25]  G. Leobacher,et al.  (t, m, s)-Nets and (t, s)-Sequences , 2014 .

[26]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[27]  H. Faure,et al.  On the star-discrepancy of generalized Hammersley sequences in two dimensions , 1986 .

[28]  Peter Kritzer On the Star Discrepancy of Digital Nets and Sequences in Three Dimensions , 2006 .

[29]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[30]  Robert Béjian Minoration de la discrépance d'une suite quelconque sur T , 1982 .

[31]  Shu Tezuka,et al.  Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.

[32]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[33]  Peter Kritzer,et al.  Star discrepancy estimates for digital (t, m, 2)-nets and digital (t, 2) -sequences over Z2 , 2005 .

[34]  S. Hansen Rational Points on Curves over Finite Fields , 1995 .

[35]  Peter Kritzer,et al.  Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences , 2006, J. Complex..

[36]  Minoration de discrépance en dimension deux , 1996 .

[37]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .