Analog Logic: Continuous-Time Analog Circuits for Statistical Signal Processing

This thesis proposes an alternate paradigm for designing computers using continuoustime analog circuits. Digital computation sacrifices continuous degrees of freedom. A principled approach to recovering them is to view analog circuits as propagating probabilities in a message passing algorithm. Within this framework, analog continuous-time circuits can perform robust, programmable, high-speed, low-power, cost-effective, statistical signal processing. This methodology will have broad application to systems which can benefit from low-power, high-speed signal processing and offers the possibility of adaptable/programmable high-speed circuitry at frequencies where digital circuitry would be cost and power prohibitive. Many problems must be solved before the new design methodology can be shown to be useful in practice: Continuous-time signal processing is not well understood. Analog computational circuits known as “soft-gates” have been previously proposed, but a complementary set of analog memory circuits is still lacking. Analog circuits are usually tunable, rarely reconfigurable, but never programmable. The thesis develops an understanding of the convergence and synchronization of statistical signal processing algorithms in continuous time, and explores the use of linear and nonlinear circuits for analog memory. An exemplary embodiment called the Noise Lock Loop (NLL) using these design primitives is demonstrated to perform direct-sequence spread-spectrum acquisition and tracking functionality and promises order-of-magnitude wins over digital implementations. A building block for the construction of programmable analog gate arrays, the “soft-multiplexer” is also proposed. Thesis Supervisor: Neil Gershenfeld Title: Associate Professor

[1]  A. Viterbi CDMA: Principles of Spread Spectrum Communication , 1995 .

[2]  Soumyajit Mandal,et al.  Analysis and CMOS implementation of a chaos-based communication system , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  José E. Franca,et al.  Design of Analog-Digital VLSI Circuits for Telecommunications and Signal Processing , 1993 .

[4]  M. Franklin,et al.  Performance comparison of asynchronous adders , 1994, Proceedings of 1994 IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems.

[5]  A. Demosthenous,et al.  A 100Mb/s, 2.8V CMOS current-mode analogue Viterbi decoder , 2001, Proceedings of the 27th European Solid-State Circuits Conference.

[6]  E. Seevinck Analysis and synthesis of translinear integrated circuits , 1988 .

[7]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[8]  A. Dmitriev,et al.  Direct Chaotic Communication in Microwave Band , 2001, nlin/0110047.

[9]  Behnaam Aazhang,et al.  Maximum-likelihood synchronization of a single user for code-division multiple-access communication systems , 1998, IEEE Trans. Commun..

[10]  Grinstein,et al.  Entrainment and communication with dissipative pseudorandom dynamics. , 1995, Physical review letters.

[11]  Sergio Verdú,et al.  Computational complexity of optimum multiuser detection , 1989, Algorithmica.

[12]  K. Abend,et al.  Statistical detection for communication channels with intersymbol interference , 1970 .

[13]  Mark R. Greenstreet,et al.  How fast will the flip flop? , 1994, Proceedings of 1994 IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems.

[14]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[15]  Gert Cauwenberghs A micropower CMOS algorithmic A/D/A converter , 1995 .

[16]  Edgar Sanchez-Sinencio,et al.  CMOS transconductance multipliers: a tutorial , 1998 .

[17]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[18]  Stephen G. Wilson,et al.  Suboptimum multiuser receivers for convolutionally coded asynchronous DS-CDMA systems , 1996, IEEE Trans. Commun..

[19]  David A. Johns,et al.  BiCMOS circuits for analog Viterbi decoders , 1998 .

[20]  Wouter A. Serdijn,et al.  Dynamic Translinear and Log-Domain Circuits , 1999 .

[21]  A. Singer,et al.  CIRCUIT IMPLEMENTATIONS OF SOLITON SYSTEMS , 1999 .

[22]  Jacob Savir,et al.  Built In Test for VLSI: Pseudorandom Techniques , 1987 .

[23]  Shannon V. Morton,et al.  An event controlled reconfigurable multi-chip FFT , 1994, Proceedings of 1994 IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems.

[24]  Tom Heskes,et al.  Stable Fixed Points of Loopy Belief Propagation Are Local Minima of the Bethe Free Energy , 2002, NIPS.

[25]  Pieter Van Rooyen,et al.  Space-Time Processing for Cdma Mobile Communications , 2000 .

[26]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[27]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .

[28]  Rafael J. Betancourt-Zamora,et al.  1-GHz and 2.8-GHz CMOS injection-locked ring oscillator prescalers , 2001, 2001 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.01CH37185).

[29]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[30]  John G. Proakis,et al.  Digital Communications , 1983 .

[31]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[32]  Remco J. Wiegerink Analysis and Synthesis of Mos Translinear Circuits , 1993 .

[33]  Joachim Hagenauer,et al.  The analog decoder , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[34]  G.D. Forney,et al.  Codes on graphs: Normal realizations , 2000, IEEE Trans. Inf. Theory.

[35]  G. Watanabe,et al.  Integrated mixer design , 2000, Proceedings of Second IEEE Asia Pacific Conference on ASICs. AP-ASIC 2000 (Cat. No.00EX434).

[36]  George J. Minty Letter to the Editor—A Variant on the Shortest-Route Problem , 1957 .

[37]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[38]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[39]  Andreas F. Molisch Wideband Wireless Digital Communications , 2000 .

[40]  A. Thanachayanont,et al.  A 150-MHz translinear phase-locked loop , 1998 .

[41]  Robert H. Walden,et al.  Performance trends for analog to digital converters , 1999, IEEE Commun. Mag..

[42]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[43]  Robert W. Brodersen,et al.  Low-Power CMOS Wireless Communications: A Wideband CDMA System Design , 1997 .