Changes in the Surface Structure of ε-Cu 3 Sn and η-Cu 6 Sn 5 due to Sputtering

[1]  J. K. Howard,et al.  Auger study of preferred sputtering on binary alloy surfaces , 1976 .

[2]  S. Fain,et al.  Segregation at CuAu alloy surfaces , 1975 .

[3]  C. C. Chang,et al.  General formalism for quantitative Auger analysis , 1975 .

[4]  M. Ono,et al.  Effect of target temperature on surface composition changes of Cu−Ni alloys during Ar ion bombardment , 1975 .

[5]  A. Isogai,et al.  Concentration Change of Sn in the Surface Layers of Cu–Sn Alloy System due to Friction , 1974 .

[6]  K. Hojou,et al.  Consistent Theory of Sputtering of Solid Targets by Ion Bombardment Using Power Potential Law , 1973 .

[7]  M. Ono,et al.  Quantitative auger analysis of copper-nickel alloy surfaces after argon ion bombardment , 1973 .

[8]  K. Nakajima,et al.  Changes in the structure and composition of automobile big-end bearing materials and their relation to bearing failure , 1972 .

[9]  G. Wehner,et al.  Alloy Sputtering Studies with in situ Auger Electron Spectroscopy , 1971 .

[10]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[11]  N. Olson,et al.  Simultaneous Measurement of Sputtered Constituents of Cu3Au , 1969 .

[12]  R. E. Weber,et al.  Use of LEED Apparatus for the Detection and Identification of Surface Contaminants , 1967 .

[13]  G. K. Wehner,et al.  Sputtering Yields of Metals for Ar+ and Ne+ Ions with Energies from 50 to 600 ev , 1961 .

[14]  G. Wehner CONTROLLED SPUTTERING OF METALS BY LOW-ENERGY Hg IONS , 1956 .