Applications of the Sparse Hough Transform for laser Data Line Fitting and Segmentation

This paper proposes a novel algorithm called the sparse Hough transform, which is shown to have better performances than the standard Hough transform for sparse input data collected from a laser on a mobile robot. In the context of laser sensing and perception for autonomous ground robots, this paper studies performances of the sparse Hough transform and compares it with other segmentation and fitting algorithms. Pseudo-code for the algorithm, theoretical analysis, computer simulations, hardware experiments, and experimental analysis of the sparse Hough transform are presented.

[1]  Kevin L. Moore,et al.  Two-dimensional laser servoing for precision motion control of an ODV robotic license plate recognition system , 2003, SPIE Defense + Commercial Sensing.

[2]  Sen Zhang,et al.  Particle filter based outdoor robot localization using natural features extracted from laser scanners , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[3]  Darren J. Kerbyson,et al.  Size invariant circle detection , 1999, Image Vis. Comput..

[4]  E. L. Zapata,et al.  A New Invariant Scheme for the Generalized Hough Transform , 1996 .

[5]  Martin David Adams Sensor Modelling, Design and Data Processing for Autonomous Navigation , 1999, World Scientific Series in Robotics and Intelligent Systems.

[6]  Carl F. R. Weiman,et al.  Fast mapping using the log-Hough transformation , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[7]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[8]  Jiri Matas,et al.  Progressive Probabilistic Hough Transform , 1998, BMVC.

[9]  Vikas Bahl,et al.  The scalar /spl epsiv/-controller: a spatial path tracking approach for ODV, Ackerman, and differentially-steered autonomous wheeled mobile robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[10]  Heikki Kälviäinen,et al.  Connective randomized Hough transform (CRHT) , 1996 .

[11]  Erkki Oja,et al.  Randomized hough transform (rht) : Basic mech-anisms, algorithms, and computational complexities , 1993 .

[12]  Kevin L. Moore,et al.  A six-wheeled omnidirectional autonomous mobile robot , 2000 .

[13]  Matthew J. Thazhuthaveetil,et al.  Parallel hough transform algorithm performance , 1991, Image Vis. Comput..

[14]  M. Abidi,et al.  Part decomposition of 3d surfaces , 2003 .

[15]  Emilio L. Zapata,et al.  Lower order circle and ellipse Hough transform , 1997, Pattern Recognit..

[16]  Kevin L. Moore,et al.  Implementation of an omnidirectional robotic inspection system (ODIS) , 2001, SPIE Defense + Commercial Sensing.

[17]  Illah Nourbakhsh Interleaving Planning and Execution for Autonomous Robots , 1997 .

[18]  Rangachar Kasturi,et al.  Machine vision , 1995 .