Circular Integrated Optical Microresonators: Analytical Methods and Computational Aspects

This chapter discusses an ab initio frequency domain model of circular microresonators, built on the physical notions that commonly enter the description of the resonator functioning in terms of interaction between fields in the circular cavity with the modes supported by the straight bus waveguides. Quantitative evaluation of this abstract model requires propagation constants associated with the cavity/bend segments, and scattering matrices, that represent the wave interaction in the coupler regions. These quantities are obtained by an analytical (2-D) or numerical (3-D) treatment of bent waveguides, along with spatial coupled mode theory (CMT) for the couplers. The required CMT formulation is described in detail. Also, quasi-analytical approximations for fast and accurate computation of the resonator spectra are discussed. The formalism discussed in this chapter provides valuable insight into the functioning of the resonators, and it is suitable for practical device design.

[1]  E.C.M. Pennings Bends in optical ridge waveguides: Modeling and experiments , 1990 .

[2]  岡本 勝就 Fundamentals of optical waveguides , 2006 .

[3]  S. Boriskina,et al.  Effect of a layered environment on the complex natural frequencies of two-dimensional WGM dielectric-ring resonators , 2002 .

[4]  L. Prkna,et al.  Field modeling of circular microresonators by film mode matching , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Comparison of coupled mode theory and FDTD simulations of coupling between bent and straight optical waveguides , 2004 .

[6]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[7]  K. Okamoto Fundamentals of Optical Waveguides , 2000 .

[8]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[9]  Charles Vassallo,et al.  Optical Waveguide Concepts , 1991 .

[10]  H J Shaw,et al.  All-single-mode fiber resonator. , 1982, Optics letters.

[11]  T. Kaneko,et al.  Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters , 1999, IEEE Photonics Technology Letters.

[12]  Shanhui Fan,et al.  Coupling of modes analysis of resonant channel add-drop filters , 1999 .

[13]  C. Koos,et al.  FDTD-Modelling of Dispersive Nonlinear Ring Resonators: Accuracy Studies and Experiments , 2006, IEEE Journal of Quantum Electronics.

[14]  K. Hiremath,et al.  Modeling of Tuning of Microresonator Filters by Perturbational Evaluation of Cavity Mode Phase Shifts , 2007, Journal of Lightwave Technology.

[15]  K. Hiremath,et al.  Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory , 2006 .

[16]  Vien Van,et al.  Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters , 2002 .

[17]  A. Sudbø,et al.  Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides , 1993 .

[18]  John D. Love,et al.  Evanescent wave coupling of whispering gallery modes of a dielectric cylinder , 1993 .

[19]  W. P. Carpes,et al.  Efficient analysis of resonant cavities by finite element method in the time domain , 2000 .

[20]  Detailed analysis of the intracavity phenomena inside a cylindrical microresonator , 2002 .

[21]  A. Yariv Universal relations for coupling of optical power between microresonators and dielectric waveguides , 2000 .

[22]  Manfred Hammer,et al.  Analytical Approaches to the Description of Optical Microresonator Devices , 2004 .

[23]  S. Ho,et al.  Design and modeling of waveguide-coupled single-mode microring resonators , 1998 .

[24]  Jin-Fa Lee,et al.  A finite-element time-domain method using prism elements for microwave cavities , 1995 .

[25]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[26]  D. Hall Selected papers on coupled-mode theory in guided-wave optics , 1993 .

[27]  H. Unger,et al.  Optical Waveguides , 1975, 1975 5th European Microwave Conference.

[28]  S. Boriskina,et al.  Highly efficient design of spectrally engineered whispering-gallery-mode microlaser resonators , 2003 .

[29]  Jiří Čtyroký,et al.  Ring microresonator as a photonic structure with complex eigenfrequency , 2004 .

[30]  A. Driessen,et al.  Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology , 2001 .

[31]  R. Stoffer,et al.  Analytic approach to dielectric optical bent slab waveguides , 2005 .

[32]  David C. Chang,et al.  Electromagnetic waves and curved structures , 1977 .

[33]  K. Vahala Optical microcavities , 2003, Nature.

[34]  C.C. Tang,et al.  Low noise-figure gain-clamped L-band double-pass erbium-doped fiber ring lasing amplifier with an interleaver , 2005, Journal of Lightwave Technology.

[35]  Chris G. H. Roeloffzen,et al.  Microresonators as building blocks for VLSI Photonics , 2004 .

[36]  S. Chu,et al.  Microring resonator arrays for VLSI photonics , 2000, IEEE Photonics Technology Letters.

[37]  William H. Press,et al.  Numerical recipes in C , 2002 .

[38]  Manfred Hammer,et al.  Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory , 2005 .

[39]  Svetlana V. Boriskina,et al.  Radiation and absorption losses of the whispering-gallery-mode dielectric resonators excited by a dielectric waveguide , 1999 .

[40]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[41]  P.-T. Ho,et al.  Higher order filter response in coupled microring resonators , 2000, IEEE Photonics Technology Letters.

[42]  T. Kaneko,et al.  An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid , 1999, IEEE Photonics Technology Letters.

[43]  Remco Stoffer,et al.  Uni- and omnidirectional simulation tools for integrated optics , 2001 .

[44]  Seng-Tiong Ho,et al.  FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators , 1997 .

[45]  Michael Watts,et al.  Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters. , 2006, Optics express.

[46]  Vien Van,et al.  Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model , 2001 .

[47]  L. Prkna,et al.  Vectorial eigenmode solver for bent waveguides based on mode matching , 2004, IEEE Photonics Technology Letters.

[48]  A. Scherer,et al.  Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.

[49]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[50]  Kirankumar R. Hiremath,et al.  Coupled Mode Theory Based Modeling and Analysis of Circular Optical Microresonators , 2005 .

[51]  J.,et al.  All-single-mode fiber resonator , 2002 .

[52]  P.-T. Ho,et al.  Compact microring notch filters , 2000, IEEE Photonics Technology Letters.

[53]  Xia Ji,et al.  Discontinuous galerkin time domain (DGTD) methods for the study of 2-D waveguide-coupled microring resonators , 2005 .

[54]  Andrea Melloni,et al.  Circuit-oriented modelling of ring-resonators , 2005 .

[55]  Y.M. Landobasa,et al.  Matrix analysis of 2-D microresonator lattice optical filters , 2005, IEEE Journal of Quantum Electronics.