Bayesian Nonlocal Operator Regression (BNOR): A Data-Driven Learning Framework of Nonlocal Models with Uncertainty Quantification

We consider the problem of modeling heterogeneous materials where micro-scale dynamics and interactions affect global behavior. In the presence of heterogeneities in material microstructure it is often impractical, if not impossible, to provide quantitative characterization of material response. The goal of this work is to develop a Bayesian framework for uncertainty quantification (UQ) in material response prediction when using nonlocal models. Our approach combines the nonlocal operator regression (NOR) technique and Bayesian inference. Specifically, we use a Markov chain Monte Carlo (MCMC) method to sample the posterior probability distribution on parameters involved in the nonlocal constitutive law, and associated modeling discrepancies relative to higher fidelity computations. As an application, we consider the propagation of stress waves through a one-dimensional heterogeneous bar with randomly generated microstructure. Several numerical tests illustrate the construction, enabling UQ in nonlocal model predictions. Although nonlocal models have become popular means for homogenization, their statistical calibration with respect to high-fidelity models has not been presented before. This work is a first step towards statistical characterization of nonlocal model discrepancy in the context of homogenization.

[1]  Lu Zhang,et al.  MetaNOR: A meta-learnt nonlocal operator regression approach for metamaterial modeling , 2022, MRS Communications.

[2]  Yue Yu,et al.  Nonparametric Learning of Kernels in Nonlocal Operators , 2022, Journal of Peridynamics and Nonlocal Modeling.

[3]  Mohsen Zayernouri,et al.  Nonlocal Machine Learning of Micro-Structural Defect Evolutions in Crystalline Materials , 2022, 2205.05729.

[4]  Christian A. Glusa,et al.  Machine-learning of nonlocal kernels for anomalous subsurface transport from breakthrough curves , 2022, Numerical Algebra, Control and Optimization.

[5]  Marta D'Elia,et al.  Fractional Modeling in Action: a Survey of Nonlocal Models for Subsurface Transport, Turbulent Flows, and Anomalous Materials , 2021, Journal of Peridynamics and Nonlocal Modeling.

[6]  Fei Lu,et al.  Learning interaction kernels in mean-field equations of 1st-order systems of interacting particles , 2020, SIAM J. Sci. Comput..

[7]  S. Silling,et al.  Peridynamic Model for Single-Layer Graphene Obtained from Coarse-Grained Bond Forces , 2021, Journal of Peridynamics and Nonlocal Modeling.

[8]  Marta D'Elia,et al.  A data-driven peridynamic continuum model for upscaling molecular dynamics , 2021, Computer Methods in Applied Mechanics and Engineering.

[9]  S. Silling Propagation of a Stress Pulse in a Heterogeneous Elastic Bar , 2021, Journal of Peridynamics and Nonlocal Modeling.

[10]  Xiao Xu,et al.  A machine-learning framework for peridynamic material models with physical constraints , 2021, Computer Methods in Applied Mechanics and Engineering.

[11]  Marta D'Elia,et al.  Data-driven Learning of Nonlocal Models: from high-fidelity simulations to constitutive laws , 2020, AAAI Spring Symposium: MLPS.

[12]  Yue Yu,et al.  Data-driven learning of robust nonlocal physics from high-fidelity synthetic data , 2020, ArXiv.

[13]  Xiao Xu,et al.  Deriving Peridynamic Influence Functions for One-dimensional Elastic Materials with Periodic Microstructure , 2020, ArXiv.

[14]  Xiaochuan Tian,et al.  Multiscale Modeling, Homogenization and Nonlocal Effects: Mathematical and Computational Issues , 2019, 75 Years of Mathematics of Computation.

[15]  Xun Huan,et al.  EMBEDDED MODEL ERROR REPRESENTATION FOR BAYESIAN MODEL CALIBRATION , 2018, International Journal for Uncertainty Quantification.

[16]  James M. Flegal,et al.  Multivariate output analysis for Markov chain Monte Carlo , 2015, Biometrika.

[17]  Qiang Du,et al.  A Peridynamic Model of Fracture Mechanics with Bond-Breaking , 2018 .

[18]  Khachik Sargsyan,et al.  Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition , 2018 .

[19]  Xun Huan,et al.  Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations , 2017, 1707.09478.

[20]  Philippe H. Geubelle,et al.  Handbook of Peridynamic Modeling , 2017 .

[21]  Nicolas Garcia Trillos,et al.  The Bayesian formulation and well-posedness of fractional elliptic inverse problems , 2016, 1611.05475.

[22]  Tiangang Cui,et al.  Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction , 2015, J. Comput. Phys..

[23]  Francesco dell’Isola,et al.  Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices , 2015 .

[24]  H. Najm,et al.  On the Statistical Calibration of Physical Models: STATISTICAL CALIBRATION OF PHYSICAL MODELS , 2015 .

[25]  Cosmin Safta,et al.  Uncertainty Quantification Toolkit (UQTk) , 2015 .

[26]  Robert L. Wolpert,et al.  Statistical Inference , 2019, Encyclopedia of Social Network Analysis and Mining.

[27]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[28]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[29]  Todd A. Oliver,et al.  Bayesian uncertainty quantification applied to RANS turbulence models , 2011 .

[30]  Q. Du,et al.  MATHEMATICAL ANALYSIS FOR THE PERIDYNAMIC NONLOCAL CONTINUUM THEORY , 2011 .

[31]  Christoph Ortner,et al.  Sharp Stability Estimates for the Force-Based Quasicontinuum Approximation of Homogeneous Tensile Deformation , 2010, Multiscale Model. Simul..

[32]  Robert E Weiss,et al.  Bayesian methods for data analysis. , 2010, American journal of ophthalmology.

[33]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[34]  Matej Praprotnik,et al.  Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat. , 2007, Soft matter.

[35]  Kirill Cherednichenko,et al.  Non-local homogenized limits for composite media with highly anisotropic periodic fibres , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[36]  John Skilling,et al.  Data Analysis-A Bayesian Tutorial: Second Edition , 2006 .

[37]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[38]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[39]  Tarek I. Zohdi,et al.  Homogenization Methods and Multiscale Modeling , 2004 .

[40]  Thomas J. R. Hughes,et al.  Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations , 2004 .

[41]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[42]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[43]  E Weinan,et al.  Multi-scale Modeling and Computation , 2003 .

[44]  James O. Berger,et al.  Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .

[45]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[46]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[47]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[48]  Kirill Cherednichenko,et al.  On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media , 2000 .

[49]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[50]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[51]  ProblemsPer Christian HansenDepartment The L-curve and its use in the numerical treatment of inverse problems , 2000 .

[52]  Fadil Santosa,et al.  A dispersive effective medium for wave propagation in periodic composites , 1991 .

[53]  M. Ortiz A method of homogenization of elastic media , 1987 .

[54]  J. Willis The nonlocal influence of density variations in a composite , 1985 .

[55]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[56]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[57]  T. R. Tauchert,et al.  An Experimental Study of Dispersion of Stress Waves in a Fiber-Reinforced Composite , 1972 .

[58]  M. Beran,et al.  Mean field variations in a statistical sample of heterogeneous linearly elastic solids , 1970 .

[59]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[60]  J. Keller,et al.  Elastic, Electromagnetic, and Other Waves in a Random Medium , 1964 .

[61]  S. Brodetsky Essai philosophique sur les probabilités , 1922, Nature.