On an Extension of the First Korn Inequality to Incompatible Tensor Fields on Domains of Arbitrary Dimensions

For a bounded domain \(\varOmega \) in \(\mathbb {R}^N\) with Lipschitz boundary \(\varGamma =\partial \varOmega \) and a relatively open and non-empty subset \(\varGamma _t\) of \(\varGamma \), we prove the existence of a positive constant \(c\) such that inequality \( c\Vert T\Vert _{\mathsf {L}^2(\varOmega ,\mathbb {R}^{N\times N})} \le \Vert {{\mathrm{sym}}}T\Vert _{\mathsf {L}^2(\varOmega ,\mathbb {R}^{N\times N})} +\Vert {{\mathrm{Curl}}}T\Vert _{\mathsf {L}^2(\varOmega ,\mathbb {R}^{N\times N(N-1)/2})}\) holds for all tensor fields \(T \in \overset{\circ }{\mathsf {H}}({{\mathrm{Curl}}};\varGamma _t,\varOmega ,\mathbb {R}^{N\times N})\), this is, for all \(T:\varOmega \rightarrow \mathbb {R}^{N\times N}\) which are square-integrable and possess a row-wise square-integrable rotation tensor field \({{\mathrm{Curl}}}T:\varOmega \rightarrow \mathbb {R}^{N\times N(N-1)/2}\) and vanishing row-wise tangential trace on \(\varGamma _t\). For compatible tensor fields \(T=\nabla { v}\) with \({ v}\in \mathsf {H}^1(\varOmega ,\mathbb {R}^N)\) having vanishing tangential Neumann trace on \(\varGamma _t\) the inequality reduces to a non-standard variant of the first Korn inequality since \({{\mathrm{Curl}}}T=0\), while for skew-symmetric tensor fields \(T\) the Poincare inequality is recovered. If \(\varGamma _t=\emptyset \), our estimate still holds at least for simply connected \(\varOmega \) and for all tensor fields \(T \in \mathsf {H}({{\mathrm{Curl}}};\varOmega ,\mathbb {R}^{N\times N})\) which are \(\mathsf {L}^2(\varOmega ,\mathbb {R}^{N\times N})\)-perpendicular to \({{\mathrm{\mathfrak {so}}}}(N)\), i.e., to all skew-symmetric constant tensors.

[1]  R. Leis Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien , 1968 .

[2]  P. Neff,et al.  A canonical extension of Kornʼs first inequality to H(Curl) motivated by gradient plasticity with plastic spin , 2011, 1106.4731.

[3]  Dirk Pauly,et al.  Complete low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains , 2011, Asymptot. Anal..

[4]  Rainer Picard,et al.  Some decomposition theorems and their application to non-linear potential theory and Hodge theory , 1990 .

[5]  Irina Mitrea,et al.  On the Regularity of Differential Forms Satisfying Mixed Boundary Conditions in a Class of Lipschitz Domains , 2009 .

[6]  Rainer Picard,et al.  On the boundary value problems of electro- and magnetostatics , 1982, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  M. Costabel A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains , 1990 .

[8]  R. Picard An elementary proof for a compact imbedding result in generalized electromagnetic theory , 1984 .

[9]  P. Neff,et al.  Poincare meets Korn via Maxwell: Extending Korn's First Inequality to Incompatible Tensor Fields , 2012, 1203.2744.

[10]  P. Neff,et al.  Maxwell meets Korn: A new coercive inequality for tensor fields in RN×N with square‐integrable exterior derivative , 2011, 1105.5013.

[11]  Frank Jochmann,et al.  A compactness result for vector fields with divergence and curl in Lq(ω) involving mixed boundary conditions , 1997 .

[12]  Rusell Brown,et al.  The mixed problem for laplace's equation in a class of lipschitz domains , 1994 .

[13]  K. Witsch,et al.  A remark on a compactness result in electromagnetic theory , 1993 .

[14]  M. Mitrea,et al.  Hodge decompositions with mixed boundary conditions and applications to partial differential equations on lipschitz manifolds , 2011 .

[15]  Hodge–Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media , 2011, 1105.4073.

[16]  D. Pauly Generalized electro-magneto statics in nonsmooth exterior domains , 2011, 1105.4070.

[17]  Über das Verhalten der Lösungen der Maxwellschen Randwertaufgabe in Gebieten mit Kegelspitzen , 1980 .

[18]  D. Pauly,et al.  Regularity results for generalized electro-magnetic problems , 2010, 1105.4091.

[19]  D. Griffel,et al.  Initial Boundary Value Problems in Mathematical Physics , 1986 .

[20]  W. Pompe Korn's First Inequality with variable coefficients and its generalization , 2003 .

[21]  Rainer Picard,et al.  On the low frequency asymptotics in electromagnetic theory. , 1984 .

[22]  P. Neff,et al.  On a canonical extension of Korn’s first and Poincaré’s inequalities to H(CURL) , 2012 .

[23]  N. Weck,et al.  Maxwell's boundary value problem on Riemannian manifolds with nonsmooth boundaries , 1974 .

[24]  R. Leis,et al.  Randwertaufgaben in der verallgemeinerten Potentialtheorie , 1981 .

[25]  P. Neff,et al.  A Korn's inequality for incompatible tensor fields , 2011 .

[26]  P. Werner,et al.  A local compactness theorem for Maxwell's equations , 1980 .

[27]  P. Kuhn Die Maxwellgleichung mit wechselnden Randbedingungen (The Maxwell Equation with Mixed Boundary Conditions) , 2011, 1108.2028.

[28]  N. Weck,et al.  Time-Harmonic Maxwell Equations in the Exterior of Perfectly Conducting, Irregular Obstacles , 2001 .