Gravitational lensing analysis of the Kilo-Degree Survey

The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological studies from weak lensing and photometric redshifts. It uses the European Southern Observatory VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in four filters similar to the Sloan Digital Sky Survey ugri bands. The best seeing time is reserved for deep r-band observations. The median 5σ limiting AB magnitude is 24.9 and the median seeing is below 0.7 arcsec. Initial KiDS observations have concentrated on the Galaxy and Mass Assembly (GAMA) regions near the celestial equator, where extensive, highly complete redshift catalogues are available. A total of 109 survey tiles, 1 square degree each, form the basis of the first set of lensing analyses of halo properties of GAMA galaxies. Nine galaxies per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69 arcmin-2. Accounting for the shape measurement weight, the median redshift of the sources is 0.53. KiDS data processing follows two parallel tracks, one optimized for weak lensing measurement and one for accurate matched-aperture photometry (for photometric redshifts). This technical paper describes the lensing and photometric redshift measurements (including a detailed description of the Gaussian aperture and photometry pipeline), summarizes the data quality and presents extensive tests for systematic errors that might affect the lensing analyses. We also provide first demonstrations of the suitability of the data for cosmological measurements, and describe our blinding procedure for preventing confirmation bias in the scientific analyses. The KiDS catalogues presented in this paper are released to the community through http://kids.strw.leidenuniv.nl.

[1]  H. Hoekstra,et al.  The Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing masses , 2015, 1502.01883.

[2]  J. Tyson,et al.  Galaxy mass distribution from gravitational light deflection , 1984 .

[3]  Bonn,et al.  Analysis of two-point statistics of cosmic shear - I. Estimators and covariances , 2002, astro-ph/0206182.

[4]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[5]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[6]  Y. Mellier,et al.  Gravity and Nongravity Modes in the VIRMOS-DESCART Weak-Lensing Survey , 2001, astro-ph/0109182.

[7]  R. Nichol,et al.  Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data , 2014, 1405.4285.

[8]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[9]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[10]  M. Meneghetti,et al.  Reliable shapelet image analysis , 2006, astro-ph/0608369.

[11]  H. Hoekstra,et al.  CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.

[12]  T. Theuns,et al.  Discriminating Weak Lensing from Intrinsic Spin Correlations Using the Curl-Gradient Decomposition , 2000, astro-ph/0012336.

[13]  A. Réfrégier Shapelets: I. a method for image analysis , 2001, astro-ph/0105178.

[14]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[15]  N. Vogt,et al.  The DEEP Groth Strip Survey. II. Hubble Space Telescope Structural Parameters of Galaxies in the Groth Strip , 2002, astro-ph/0205025.

[16]  B. Garilli,et al.  The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field , 2015, 1502.02867.

[17]  Barry M. Lasker,et al.  The Guide Star Photometric Catalog. I. , 1988 .

[18]  H. Hoekstra,et al.  Finding halo streams with a pencil-beam survey - New wraps in the Sagittarius stream , 2013, 1311.7580.

[19]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[20]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[21]  F. Zwicky On the Masses of Nebulae and of Clusters of Nebulae , 1937 .

[22]  M. Radovich,et al.  Variability-selected Active Galactic Nuclei in the VST-SUDARE/VOICE Survey of the COSMOS Field , 2014, 1412.1488.

[23]  Jeffrey A. Newman,et al.  Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.

[24]  Jean Coupon,et al.  athena: Tree code for second-order correlation functions , 2014 .

[25]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[26]  Yannick Mellier,et al.  ESA-ESO Working Group on "Fundamental Cosmology" , 2006 .

[27]  B. T. P. Rowe,et al.  Weak gravitational flexion , 2006 .

[28]  Alexander S. Szalay,et al.  Galaxy–galaxy weak lensing in the Sloan Digital Sky Survey: intrinsic alignments and shear calibration errors , 2004 .

[29]  Edwin A. Valentijn,et al.  The Astro-WISE optical image pipeline , 2011, Experimental Astronomy.

[30]  Alexandre Refregier,et al.  Shapelets — II. A method for weak lensing measurements , 2003 .

[31]  University of Cambridge,et al.  The VLT Survey Telescope ATLAS , 2015, 1502.05432.

[32]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[33]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[34]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[35]  P. Schneider,et al.  BLOX: The Bonn Lensing, Optical, and X-ray selected galaxy clusters I. Cluster catalog construction ⋆ , ⋆⋆ , 2007, 0705.3455.

[36]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[37]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[38]  A. Hopkins,et al.  Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00735.

[39]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[40]  M. White,et al.  On using angular cross-correlations to determine source redshift distributions , 2013, 1302.0857.

[41]  Rupert A. C. Croft,et al.  On the measurement of cosmological parameters , 2011, 1112.3108.

[42]  Brandon C. Kelly,et al.  Morphological Classification of Galaxies by Shapelet Decomposition in the Sloan Digital Sky Survey , 2004 .

[43]  C. B. D'Andrea,et al.  Wide-Field Lensing Mass Maps from DES Science Verification Data: Methodology and Detailed Analysis , 2015, 1504.03002.

[44]  H. J. Farnhill,et al.  The VST Photometric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS , 2014, 1402.7024.

[45]  B. Rowe Improving PSF modelling for weak gravitational lensing using new methods in model selection , 2009, 0904.3056.

[46]  H. Hoekstra,et al.  CFHTLenS: a weak lensing shear analysis of the 3D-Matched-Filter galaxy clusters , 2014, 1409.3571.

[47]  Simon P. Driver,et al.  The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: Bridging the Gap between Low and High Redshift , 2013 .

[48]  E. Deul,et al.  GaBoDS: The Garching-Bonn Deep Survey; IV. Methods for the Image reduction of multi-chip Cameras , 2005 .

[49]  D. Fabricant,et al.  X-ray measurements of the mass of M 87. , 1980 .

[50]  Massimo Viola,et al.  Means of confusion: how pixel noise affects shear estimates for weak gravitational lensing , 2012, 1204.5147.

[51]  H. Hoekstra,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.0032.

[52]  T. Kitching,et al.  Bayesian galaxy shape measurement for weak lensing surveys – I. Methodology and a fast-fitting algorithm , 2007, 0708.2340.

[53]  L. Waerbeke,et al.  Gravitational lensing simulations - I. Covariance matrices and halo catalogues , 2012, 1202.2332.

[54]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[55]  Mark Cropper,et al.  Measuring a charge-coupled device point spread function , 2014, 1412.5382.

[56]  R. Nichol,et al.  Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. , 2015, Physical review letters.

[57]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[58]  Adam Amara,et al.  Noise bias in weak lensing shape measurements , 2012, 1203.5050.

[59]  A. Schulz CALIBRATING PHOTOMETRIC REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS , 2009, 0910.3683.

[60]  V. Rubin,et al.  Extended rotation curves of high-luminosity spiral galaxies. IV. Systematic dynamical properties, Sa through Sc , 1978 .

[61]  H. Hoekstra,et al.  Galaxy-galaxy lensing constraints on the relation between baryons and dark matter in galaxies in the Red Sequence Cluster Survey 2 , 2011, 1107.4093.

[62]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[63]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[64]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[65]  The Dark Matter Problem , 1998, astro-ph/9812015.

[66]  P. Schneider,et al.  B-modes in cosmic shear from source redshift clustering , 2002 .

[67]  Robert Armstrong,et al.  GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..

[68]  E. A. Valentijn,et al.  The Astro-WISE datacentric information system , 2012, 1208.0447.

[69]  Sandra M. Faber,et al.  Masses and Mass-To-Light Ratios of Galaxies , 1979 .

[70]  H. Hoekstra,et al.  CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations , 2014, 1404.5469.

[71]  H. Hoekstra,et al.  CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions , 2012, 1212.3339.

[72]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[73]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): AUTOZ spectral redshift measurements, confidence and errors. , 2014, 1404.2626.

[74]  P. Hudelot,et al.  CARS: the CFHTLS-Archive-Research Survey. I. Five-band multi-colour data from 37 sq. deg. CFHTLS-wid , 2008, 0811.2239.

[75]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[76]  Mustapha Ishak,et al.  The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology , 2014, 1407.6990.

[77]  W. M. Wood-Vasey,et al.  Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes , 2007, astro-ph/0701510.

[78]  P. Schneider,et al.  COSEBIs: Extracting the full E-/B-mode information from cosmic shear correlation functions , 2010, 1002.2136.

[79]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[80]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .

[81]  J. Bahcall,et al.  Distribution of dark matter in the spiral galaxy NGC 3198. , 1985 .

[82]  Massimo Brescia,et al.  Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2 , 2015 .

[83]  Konrad Kuijken,et al.  Probing galaxy dark matter haloes in COSMOS with weak lensing flexion , 2010, 1011.3041.

[84]  Michael C. Cooper,et al.  THE ADVANCED CAMERA FOR SURVEYS GENERAL CATALOG: STRUCTURAL PARAMETERS FOR APPROXIMATELY HALF A MILLION GALAXIES , 2012, 1203.1651.

[85]  M. Schirmer,et al.  THELI: CONVENIENT REDUCTION OF OPTICAL, NEAR-INFRARED, AND MID-INFRARED IMAGING DATA , 2013, 1308.4989.

[86]  P. Astier,et al.  The brighter-fatter effect and pixel correlations in CCD sensors , 2014, 1402.0725.

[87]  Properties of Weak Lensing Clusters Detected on Hyper Suprime-Cam 2.3 Square Degree Field , 2015, 1504.06974.

[88]  T. Kitching,et al.  On the Probability Distributions of Ellipticity , 2013, 1309.7844.

[89]  R. Blandford,et al.  Gravitational imaging by isolated elliptical potential wells. I. Cross sections. II. Probability distributions , 1987 .

[90]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[91]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[92]  GaaP: PSF- and aperture-matched photometry using shapelets , 2006, astro-ph/0610606.

[93]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[94]  L. Miller,et al.  PROPERTIES OF WEAK LENSING CLUSTERS DETECTED ON HYPER SUPRIME-CAM's 2.3 deg2 FIELD , 2015 .

[95]  Roberto Scaramella,et al.  Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation) , 2012, 1210.7690.

[96]  Ludovic van Waerbeke,et al.  Simulations of weak gravitational lensing – II. Including finite support effects in cosmic shear covariance matrices , 2014, 1406.0543.

[97]  Shears from shapelets , 2005, astro-ph/0601011.

[98]  Ellipticity of dark matter haloes with galaxy–galaxy weak lensing , 2005, astro-ph/0507108.

[99]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[100]  S. Krughoff,et al.  The effective number density of galaxies for weak lensing measurements in the LSST project , 2013, 1305.0793.

[101]  K. G. Begeman,et al.  Monitoring the photometric behavior of OmegaCAM with Astro-WISE , 2012, 1212.6120.

[102]  B. Fields,et al.  Big bang nucleosynthesis , 2006 .

[103]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.