Quasi-Norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems
暂无分享,去创建一个
[1] Rolf Rannacher,et al. Asymptotic $L^\infty $-Error Estimates for Linear Finite Element Approximations of Quasilinear Boundary Value Problems , 1978 .
[2] Colin Atkinson,et al. SOME BOUNDARY-VALUE PROBLEMS FOR THE EQUATION 〈.(|〈φ|N〈φ)=0 , 1984 .
[3] Mark Ainsworth,et al. Approximation theory for the hp -version finite element method and application to the non-linear Laplacian , 2000 .
[4] Rolf Rannacher,et al. Finite element methods for nonlinear elliptic systems of second order , 1980 .
[5] Wenbin Liu. Degenerate quasilinear elliptic equations arising from bimaterial problems in elasticplastic mechan , 1999 .
[6] John W. Barrett,et al. Higher-order regularity for the solutions of some degenerate quasilinear elliptic equations in the plane , 1993 .
[7] Mark Ainsworth,et al. The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs , 1999, Numerische Mathematik.
[8] Gary M. Lieberman,et al. Boundary regularity for solutions of degenerate elliptic equations , 1988 .
[9] Carsten Ebmeyer,et al. Global Regularity in Fractional Order Sobolev Spaces for the p-Laplace Equation on Polyhedral Domains , 2005 .
[10] Jacques Baranger,et al. Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .
[11] J. Baranger,et al. Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .
[12] John W. Barrett,et al. Finite element approximation of the p-Laplacian , 1993 .
[13] Claudio Padra,et al. A Posteriori Error Estimators for Nonconforming Approximation of Some Quasi-Newtonian Flows , 1997 .
[14] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[15] Rodolfo Bermejo,et al. A Multigrid Algorithm for the p-Laplacian , 1999, SIAM J. Sci. Comput..
[16] Wenbin Liu,et al. Quasi-Norm Local Error Estimators for p-Laplacian , 2001, SIAM J. Numer. Anal..
[17] Wenbin Liu,et al. Finite element approximationof a nonlinear elliptic equation arising from bimaterial problemsin elastic-plastic mechanics , 2000, Numerische Mathematik.
[18] Jinchao Xu,et al. Global and uniform convergence of subspace correction methods for some convex optimization problems , 2002, Math. Comput..
[19] H. Manouzi,et al. Mixed finite element analysis of a non‐linear three‐fields Stokes model , 2001 .
[20] W. B. Liu,et al. Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .
[21] Carsten Carstensen,et al. A Posteriori Finite Element Error Control for the P-Laplace Problem , 2003, SIAM J. Sci. Comput..
[22] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[23] John W. Barrett,et al. Finite element approximation of some degenerate monotone quasilinear elliptic systems , 1996 .
[24] S. Chow. Finite element error estimates for non-linear elliptic equations of monotone type , 1989 .
[25] Mohamed Farhloul. A mixed finite element method for a nonlinear Dirichlet problem , 1998 .
[26] D. Sandri. A posteriori estimators for mixed finite element approximations of a fluid obeying the power law , 1998 .
[27] Wenbin Liu,et al. Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian , 2001, Numerische Mathematik.
[28] John W. Barrett,et al. A further remark on the regularity of the solutions of the p -Laplacian and its applications to their finite element approximations , 1993 .