Quasi-Norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems

Summary.In this work, new interpolation error estimates have been derived for some well-known interpolators in the quasi-norms. The estimates are found to be essential to obtain the optimal a priori error bounds under the weakened regularity conditions for the piecewise linear finite element approximation of a class of degenerate equations. In particular, by using these estimates, we can close the existing gap between the regularity required for deriving the optimal error bounds and the regularity achievable for the smooth data for the 2-d and 3-dp-Laplacian.

[1]  Rolf Rannacher,et al.  Asymptotic $L^\infty $-Error Estimates for Linear Finite Element Approximations of Quasilinear Boundary Value Problems , 1978 .

[2]  Colin Atkinson,et al.  SOME BOUNDARY-VALUE PROBLEMS FOR THE EQUATION 〈.(|〈φ|N〈φ)=0 , 1984 .

[3]  Mark Ainsworth,et al.  Approximation theory for the hp -version finite element method and application to the non-linear Laplacian , 2000 .

[4]  Rolf Rannacher,et al.  Finite element methods for nonlinear elliptic systems of second order , 1980 .

[5]  Wenbin Liu Degenerate quasilinear elliptic equations arising from bimaterial problems in elasticplastic mechan , 1999 .

[6]  John W. Barrett,et al.  Higher-order regularity for the solutions of some degenerate quasilinear elliptic equations in the plane , 1993 .

[7]  Mark Ainsworth,et al.  The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs , 1999, Numerische Mathematik.

[8]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[9]  Carsten Ebmeyer,et al.  Global Regularity in Fractional Order Sobolev Spaces for the p-Laplace Equation on Polyhedral Domains , 2005 .

[10]  Jacques Baranger,et al.  Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .

[11]  J. Baranger,et al.  Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .

[12]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[13]  Claudio Padra,et al.  A Posteriori Error Estimators for Nonconforming Approximation of Some Quasi-Newtonian Flows , 1997 .

[14]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[15]  Rodolfo Bermejo,et al.  A Multigrid Algorithm for the p-Laplacian , 1999, SIAM J. Sci. Comput..

[16]  Wenbin Liu,et al.  Quasi-Norm Local Error Estimators for p-Laplacian , 2001, SIAM J. Numer. Anal..

[17]  Wenbin Liu,et al.  Finite element approximationof a nonlinear elliptic equation arising from bimaterial problemsin elastic-plastic mechanics , 2000, Numerische Mathematik.

[18]  Jinchao Xu,et al.  Global and uniform convergence of subspace correction methods for some convex optimization problems , 2002, Math. Comput..

[19]  H. Manouzi,et al.  Mixed finite element analysis of a non‐linear three‐fields Stokes model , 2001 .

[20]  W. B. Liu,et al.  Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .

[21]  Carsten Carstensen,et al.  A Posteriori Finite Element Error Control for the P-Laplace Problem , 2003, SIAM J. Sci. Comput..

[22]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[23]  John W. Barrett,et al.  Finite element approximation of some degenerate monotone quasilinear elliptic systems , 1996 .

[24]  S. Chow Finite element error estimates for non-linear elliptic equations of monotone type , 1989 .

[25]  Mohamed Farhloul A mixed finite element method for a nonlinear Dirichlet problem , 1998 .

[26]  D. Sandri A posteriori estimators for mixed finite element approximations of a fluid obeying the power law , 1998 .

[27]  Wenbin Liu,et al.  Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian , 2001, Numerische Mathematik.

[28]  John W. Barrett,et al.  A further remark on the regularity of the solutions of the p -Laplacian and its applications to their finite element approximations , 1993 .