Energetic performances of the metal-organic framework ZIF-8 obtained using high pressure water intrusion-extrusion experiments.

The "ZIF-8-water" system displays reproducible shock-absorber behaviour over several cycles with a stored energy of 13.3 J g(-1) and an energy yield close to 85%. The combination of the main features evidenced for ZIF-8, i.e. a quite low intrusion pressure and a high stored energy, opens a field for new applications.

[1]  J. Patarin,et al.  Energetic Performances of Channel and Cage-Type Zeosils , 2012 .

[2]  Chung-Cherng Lin,et al.  Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework. , 2012, Physical review letters.

[3]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[4]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[5]  Jianrong Li,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[6]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[7]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[8]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical reviews.

[9]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[10]  J. Patarin,et al.  Energetic Performances of STT-Type Zeosil: Influence of the Nature of the Mineralizing Agent Used for the Synthesis , 2012 .

[11]  J. Patarin,et al.  High pressure water intrusion investigation of pure silica 1D channel AFI, MTW and TON-type zeolites , 2011 .

[12]  D. D. De Vos,et al.  Biobutanol separation with the metal-organic framework ZIF-8. , 2011, ChemSusChem.

[13]  François-Xavier Coudert,et al.  Structural transitions in MIL-53 (Cr): view from outside and inside. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[14]  H. Gies,et al.  High-Pressure Water Intrusion Investigation of Pure Silica RUB-41 and S-SOD Zeolite Materials , 2011 .

[15]  C. Serre,et al.  Using pressure to provoke the structural transition of metal-organic frameworks. , 2010, Angewandte Chemie.

[16]  A. Simon‐Masseron,et al.  Adsorption of CO(2), CH(4), and N(2) on zeolitic imidazolate frameworks: experiments and simulations. , 2010, Chemistry.

[17]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[18]  Christian J. Doonan,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[19]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[20]  A. Cheetham,et al.  The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. , 2009, Angewandte Chemie.

[21]  S. Nguyen,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[22]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[23]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[24]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[25]  J. Long,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[26]  Stefan Kaskel,et al.  Characterization of metal-organic frameworks by water adsorption , 2009 .

[27]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[28]  A. Fuchs,et al.  Thermodynamics of water intrusion in nanoporous hydrophobic solids. , 2008, Physical chemistry chemical physics : PCCP.

[29]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[30]  J. Patarin,et al.  The Pure Silica Chabazite: A High Volume Molecular Spring at Low Pressure for Energy Storage , 2007 .

[31]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[32]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[33]  A. Fuchs,et al.  Water condensation in hydrophobic nanopores. , 2005, Angewandte Chemie.

[34]  J. Patarin,et al.  Energetics: a new field of applications for hydrophobic zeolites. , 2001, Journal of the American Chemical Society.

[35]  V. Eroshenko,et al.  Molecular spring or bumper: A new application for hydrophobic zeolitic materials , 2004 .