An urban infrastructure assessment system built on geo-tagged images and machine learning

[1]  Hyoungkwan Kim,et al.  Augmented reality system for facility management using image-based indoor localization , 2019, Automation in Construction.

[2]  Bolei Zhou,et al.  Measuring human perceptions of a large-scale urban region using machine learning , 2018, Landscape and Urban Planning.

[3]  Cyrus Shahabi,et al.  A Deep Learning Approach for Road Damage Detection from Smartphone Images , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[4]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[5]  Peter Kontschieder,et al.  The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[6]  Rozenn Dahyot,et al.  Automatic Discovery and Geotagging of Objects from Street View Imagery , 2017, Remote. Sens..

[7]  Bolei Zhou,et al.  Recognizing City Identity via Attribute Analysis of Geo-tagged Images , 2014, ECCV.

[8]  Zhao Zhang,et al.  Urban Infrastructure Financing in Reform-era China , 2011 .

[9]  Mubarak Shah,et al.  Accurate Image Localization Based on Google Maps Street View , 2010, ECCV.

[10]  R. Ulrich,et al.  On estimating the difference limen in duration discrimination tasks: A comparison of the 2AFC and the reminder task , 2008, Perception & psychophysics.

[11]  D. Sitanyiova,et al.  Gis application for managing and maintaining road network in Ulaanbaatar , 2013 .

[12]  A. Cohn,et al.  Expert Systems With Applications , 2022 .