The autophagy-activating kinase ULK1 mediates clearance of free α-globin in β-thalassemia

Rapamycin alleviates β-thalassemia by stimulating ULK1-dependent clearance of toxic free α-globin. Unclogging red blood cells In β-thalassemia, a genetic disorder caused by mutations in the β-globin subunit of adult hemoglobin, the pathological consequences are caused by two problems. One is a shortage of adult hemoglobin that can function to transport oxygen, while the other is a buildup of excess α-globin subunits, which damages the red blood cells and thus further impairs oxygen transport in the body. Using mouse models of β-thalassemia as well as patient-derived cells, Lechauve et al. determined that autophagy-activating kinase ULK1 plays a key role in the clearance of accumulated α-globin. The authors also showed that the drug rapamycin stimulates ULK1-dependent autophagy and thus facilitates α-globin clearance. In β-thalassemia, accumulated free α-globin forms intracellular precipitates that impair erythroid cell maturation and viability. Protein quality control systems mitigate β-thalassemia pathophysiology by degrading toxic free α-globin, although the associated mechanisms are poorly understood. We show that loss of the autophagy-activating Unc-51–like kinase 1 (Ulk1) gene in β-thalassemic mice reduces autophagic clearance of α-globin in red blood cell precursors and exacerbates disease phenotypes, whereas inactivation of the canonical autophagy-related 5 (Atg5) gene has relatively minor effects. Systemic treatment with the mTORC1 inhibitor rapamycin reduces α-globin precipitates and lessens pathologies in β-thalassemic mice via an ULK1-dependent pathway. Similarly, rapamycin reduces free α-globin accumulation in erythroblasts derived from CD34+ cells of β-thalassemic individuals. Our findings define a drug-regulatable pathway for ameliorating β-thalassemia.

[1]  S. Ichinose,et al.  An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia , 2019, The Journal of clinical investigation.

[2]  D. Cox,et al.  Protein aggregation in cell biology: An aggregomics perspective of health and disease. , 2020, Seminars in cell & developmental biology.

[3]  M. Beibel,et al.  TORC1 inhibition enhances immune function and reduces infections in the elderly , 2018, Science Translational Medicine.

[4]  N. Mizushima A brief history of autophagy from cell biology to physiology and disease , 2018, Nature Cell Biology.

[5]  R. Xavier,et al.  Autophagy-Independent Lysosomal Targeting Regulated by ULK1/2-FIP200 and ATG9. , 2017, Cell reports.

[6]  M. Justice,et al.  UBE2O remodels the proteome during terminal erythroid differentiation , 2017, Science.

[7]  R. Hegde,et al.  UBE2O is a quality control factor for orphans of multiprotein complexes , 2017, Science.

[8]  H. Sebastian Seung,et al.  Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification , 2017, Bioinform..

[9]  A. Ballabio,et al.  Molecular definitions of autophagy and related processes , 2017, The EMBO journal.

[10]  Mondira Kundu,et al.  Canonical and noncanonical functions of ULK/Atg1. , 2017, Current opinion in cell biology.

[11]  Haibo Zhu,et al.  Dissecting the role of AMP-activated protein kinase in human diseases , 2017, Acta pharmaceutica Sinica. B.

[12]  T. K. van den Berg,et al.  From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis , 2017, Front. Immunol..

[13]  L. Carneiro,et al.  Heme and iron induce protein aggregation , 2017, Autophagy.

[14]  L. Ye,et al.  p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation , 2016, Cellular & Molecular Biology Letters.

[15]  Qiang Liu,et al.  Atg5-dependent autophagy contributes to the development of acute myeloid leukemia in an MLL-AF9-driven mouse model , 2016, Cell Death and Disease.

[16]  Z. Ye,et al.  ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy. , 2016, Molecular cell.

[17]  K. Guan,et al.  Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming , 2015, Nature Cell Biology.

[18]  Rémi-Martin Laberge,et al.  Age-Related Neurodegeneration Prevention Through mTOR Inhibition: Potential Mechanisms and Remaining Questions. , 2015, Current topics in medicinal chemistry.

[19]  R. Calzolari,et al.  Efficacy of Rapamycin as Inducer of Hb F in Primary Erythroid Cultures from Sickle Cell Disease and β-Thalassemia Patients , 2015, Hemoglobin.

[20]  D. Higgs,et al.  α-Globin as a molecular target in the treatment of β-thalassemia. , 2015, Blood.

[21]  Y. Fujioka,et al.  Atg1 family kinases in autophagy initiation , 2015, Cellular and Molecular Life Sciences.

[22]  Yong Tae Kwon,et al.  Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies , 2015, Experimental & Molecular Medicine.

[23]  D. Weatherall,et al.  The α-thalassemias. , 2014, The New England journal of medicine.

[24]  S. Honda,et al.  Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes , 2014, Nature Communications.

[25]  Sang Gyun Kim,et al.  Rapamycin: one drug, many effects. , 2014, Cell metabolism.

[26]  R. Kondratov,et al.  Rapamycin in preventive (very low) doses , 2014, Aging.

[27]  A. Lilienbaum Relationship between the proteasomal system and autophagy. , 2017, International journal of biochemistry and molecular biology.

[28]  H. Simon,et al.  ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy , 2013, Nature Communications.

[29]  O. Hermine,et al.  Ineffective Erythropoiesis in β-Thalassemia , 2013, TheScientificWorldJournal.

[30]  P. Blackshear,et al.  mTOR regulates cellular iron homeostasis through tristetraprolin. , 2012, Cell metabolism.

[31]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[32]  M. Weiss,et al.  Integrated protein quality-control pathways regulate free α-globin in murine β-thalassemia. , 2012, Blood.

[33]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[34]  P. Codogno,et al.  Canonical and non-canonical autophagy: variations on a common theme of self-eating? , 2011, Nature Reviews Molecular Cell Biology.

[35]  C. Jung,et al.  ULK 1 inhibits the kinase activity of mTORC 1 and cell proliferation , 2012 .

[36]  J. Keller,et al.  Transplantation of mouse fetal liver cells for analyzing the function of hematopoietic stem and progenitor cells. , 2012, Methods in molecular biology.

[37]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[38]  C. Jung,et al.  ULK1 inhibits the kinase activity of mTORC1 and cell proliferation , 2011, Autophagy.

[39]  Marta Martínez-Vicente,et al.  Fighting neurodegeneration with rapamycin: mechanistic insights , 2011, Nature Reviews Neuroscience.

[40]  M. Kundu ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy. , 2011, Antioxidants & redox signaling.

[41]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[42]  S. Fucharoen,et al.  Enhanced activation of autophagy in β-thalassemia/Hb E erythroblasts during erythropoiesis , 2011, Annals of Hematology.

[43]  M. Weiss,et al.  Protein quality control during erythropoiesis and hemoglobin synthesis. , 2010, Hematology/oncology clinics of North America.

[44]  M. Komatsu,et al.  MBSJ MCC Young Scientist Award 2009
REVIEW: Selective autophagy regulates various cellular functions , 2010, Genes to cells : devoted to molecular & cellular mechanisms.

[45]  D. Metzger,et al.  Autophagy is required to maintain muscle mass. , 2009, Cell metabolism.

[46]  K. Otsu,et al.  Discovery of Atg5/Atg7-independent alternative macroautophagy , 2009, Nature.

[47]  She Chen,et al.  ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy* , 2009, Journal of Biological Chemistry.

[48]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[49]  D. Rubinsztein,et al.  Autophagy Inhibition Compromises Degradation of Ubiquitin-Proteasome Pathway Substrates , 2009, Molecular cell.

[50]  V. Schreiber,et al.  The expanding field of poly(ADP-ribosyl)ation reactions. ‘Protein Modifications: Beyond the Usual Suspects' Review Series , 2008, EMBO reports.

[51]  Daniel J Klionsky,et al.  The Atg8 and Atg12 ubiquitin‐like conjugation systems in macroautophagy , 2008, EMBO reports.

[52]  C. Thompson,et al.  Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. , 2008, Blood.

[53]  K. Zatloukal,et al.  How a Cell Deals with Abnormal Proteins , 2007, Pathobiology.

[54]  N. Mizushima,et al.  How to Interpret LC3 Immunoblotting , 2007, Autophagy.

[55]  Yasushi Matsumura,et al.  The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress , 2007, Nature Medicine.

[56]  M. Matsui,et al.  LC3, an Autophagosome Marker, Can be Incorporated into Protein Aggregates Independent of Autophagy: Caution in the Interpretation of LC3 Localization , 2007, Autophagy.

[57]  R. Ljung,et al.  The thalassaemia syndromes , 2007, Scandinavian journal of clinical and laboratory investigation.

[58]  Roberto Gambari,et al.  Effects of rapamycin on accumulation of α‐, β‐ and γ‐globin mRNAs in erythroid precursor cells from β‐thalassaemia patients , 2006 .

[59]  M. Socolovsky,et al.  Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. , 2006, Blood.

[60]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[61]  D. Weatherall,et al.  A novel molecular basis for beta thalassemia intermedia poses new questions about its pathophysiology. , 2005, Blood.

[62]  A. Gow,et al.  Loss of α-hemoglobin–stabilizing protein impairs erythropoiesis and exacerbates β-thalassemia , 2004 .

[63]  U. Klingmüller,et al.  A mouse model for visualization and conditional mutations in the erythroid lineage. , 2004, Blood.

[64]  M. Trudel,et al.  Differential Regulatory and Compensatory Responses in Hematopoiesis/Erythropoiesis in α- and β-Globin Hemizygous Mice* , 2004, Journal of Biological Chemistry.

[65]  Aaron Ciechanover,et al.  The Ubiquitin Proteasome System in Neurodegenerative Diseases Sometimes the Chicken, Sometimes the Egg , 2003, Neuron.

[66]  G. Blobel,et al.  An abundant erythroid protein that stabilizes free α-haemoglobin , 2002, Nature.

[67]  T. Somervaille Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management , 2001 .

[68]  N. Olivieri The β-Thalassemias , 1999 .

[69]  S. Thein,et al.  Erythroblastic Inclusions in Dominantly Inherited β Thalassemias , 1997 .

[70]  P. Detloff,et al.  A mouse model for beta 0-thalassemia. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[71]  R. Advani,et al.  Oxidative red blood cell membrane injury in the pathophysiology of severe mouse beta-thalassemia. , 1992, Blood.

[72]  S. Schrier,et al.  Erythrocyte membrane skeleton abnormalities in severe beta-thalassemia. , 1987, Blood.

[73]  Alter Bp Gel electrophoretic separation of globin chains. , 1981 .

[74]  B. Alter Gel electrophoretic separation of globin chains. , 1981, Progress in clinical and biological research.

[75]  S. Wickramasinghe,et al.  Ultrastructural Studies of Erythropoiesis in β‐Thalassaemia Trait , 1980 .

[76]  Mechanistic insights , 2022 .