Multilevel Growth Mixture Models for Classifying Groups

This article introduces a multilevel growth mixture model (MGMM) for classifying both the individuals and the groups they are nested in. Nine variations of the general model are described that differ in terms of categorical and continuous latent variable specification within and between groups. An application in the context of school effectiveness research is presented. Schools are classified into three Type B effectiveness categories based on their mean student mathematics achievement growth trajectories, controlling for differences in students' backgrounds across schools. The classification outcome is regressed on a set of school practice variables to investigate the association between practices and cognitive development. Various issues related to model specification are discussed, including the use of covariates to identify substantively meaningful classes.

[1]  N. E. Day Estimating the components of a mixture of normal distributions , 1969 .

[2]  B. Muthén,et al.  Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm , 1999, Biometrics.

[3]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[4]  G. Verbeke,et al.  A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .

[5]  Stan Lipovetsky,et al.  Generalized Latent Variable Modeling: Multilevel,Longitudinal, and Structural Equation Models , 2005, Technometrics.

[6]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[7]  Sophia Rabe-Hesketh,et al.  Multilevel and longitudinal modeling using Stata. 2nd edition , 2008 .

[8]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[9]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[10]  David J. Spiegelhalter,et al.  WinBUGS user manual version 1.4 , 2003 .

[11]  Daniel J Bauer,et al.  The integration of continuous and discrete latent variable models: potential problems and promising opportunities. , 2004, Psychological methods.

[12]  Gregory J. Palardy,et al.  Teacher Effectiveness in First Grade: The Importance of Background Qualifications, Attitudes, and Instructional Practices for Student Learning , 2008 .

[13]  José G. Dias,et al.  Model Selection for the Binary Latent Class Model: A Monte Carlo Simulation , 2006, Data Science and Classification.

[14]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[15]  Jay Magidson,et al.  LG-Syntax user's guide: Manual for Latent GOLD 4.5 Syntax module , 2008 .

[16]  Alan Booth,et al.  Family-school links : how do they affect educational outcomes? , 1996 .

[17]  M. Neale,et al.  Distinguishing Between Latent Classes and Continuous Factors: Resolution by Maximum Likelihood? , 2006, Multivariate behavioral research.

[18]  B. Muthén,et al.  Multilevel Mixture Models , 2006 .

[19]  Sophia Rabe-Hesketh,et al.  Multilevel and Longitudinal Modeling Using Stata , 2005 .

[20]  J. Singer,et al.  Applied Longitudinal Data Analysis , 2003 .

[21]  L. A. Goodman The Analysis of Systems of Qualitative Variables When Some of the Variables Are Unobservable. Part I-A Modified Latent Structure Approach , 1974, American Journal of Sociology.

[22]  P. Deb Finite Mixture Models , 2008 .

[23]  N. G. Best,et al.  WinBUGS User Manual: Version 1.4 , 2001 .

[24]  D S Nagin,et al.  Analyzing developmental trajectories of distinct but related behaviors: a group-based method. , 2001, Psychological methods.

[25]  Stephen W. Raudenbush,et al.  The Estimation of School Effects , 1995 .

[26]  Jane L. David Synthesis of Research on School-Based Management , 1989 .

[27]  Edward E. Rigdon,et al.  Advances in Latent Variable Mixture Models , 2010 .

[28]  Bengt Muthén,et al.  Latent Variable Analysis: Growth Mixture Modeling and Related Techniques for Longitudinal Data , 2004 .

[29]  Daniel J Bauer,et al.  Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. , 2003, Psychological methods.

[30]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[31]  T. Ferguson BAYESIAN DENSITY ESTIMATION BY MIXTURES OF NORMAL DISTRIBUTIONS , 1983 .

[32]  José G. Dias,et al.  Model Selection Criteria for Model-Based Clustering of Categorical Time Series Data: A Monte Carlo Study , 2006, GfKl.

[33]  J. Wolfe PATTERN CLUSTERING BY MULTIVARIATE MIXTURE ANALYSIS. , 1970, Multivariate behavioral research.

[34]  J. Fox,et al.  Bayesian estimation of a multilevel IRT model using gibbs sampling , 2001 .

[35]  Bengt Muthén,et al.  Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class–latent growth modeling. , 2001 .

[36]  R. Cudeck,et al.  A realistic perspective on pattern representation in growth data: comment on Bauer and Curran (2003). , 2003, Psychological methods.

[37]  A. McNeil,et al.  Latent Curve Models: A Structural Equation Approach , 2007 .

[38]  Daniel S. Nagin,et al.  Analyzing developmental trajectories: A semiparametric, group-based approach , 1999 .

[39]  Jeroen K. Vermunt,et al.  Determining the Number of Components in Mixture Models for Hierarchical Data , 2008, GfKl.

[40]  F. Krauss Latent Structure Analysis , 1980 .

[41]  Jeroen K. Vermunt,et al.  A nonparametric random-coefficients approach : The latest class regression model , 2001 .

[42]  James J. Lindsay,et al.  The Effects of Summer Vacation on Achievement Test Scores: A Narrative and Meta-Analytic Review , 1996 .

[43]  F. Scholz Maximum Likelihood Estimation , 2006 .

[44]  Jeroen K. Vermunt,et al.  7. Multilevel Latent Class Models , 2003 .

[45]  H. Bozdogan Choosing the Number of Component Clusters in the Mixture-Model Using a New Informational Complexity Criterion of the Inverse-Fisher Information Matrix , 1993 .

[46]  S. Rabe-Hesketh,et al.  Generalized multilevel structural equation modeling , 2004 .

[47]  C. Anderson‐Cook,et al.  Group-Based Modeling of Development , 2006 .

[48]  M. Aitkin A General Maximum Likelihood Analysis of Variance Components in Generalized Linear Models , 1999, Biometrics.