Kindergarden quantum mechanics graduates (...or how I learned to stop gluing LEGO together and love the ZX-calculus)

This paper is a ‘spiritual child’ of the 2005 lecture notes Kindergarten Quantum Mechanics [23], which showed how a simple, pictorial extension of Dirac notation allowed several quantum features to be easily expressed and derived, using language even a kindergartner can understand. Central to that approach was the use of pictures and pictorial transformation rules to understand and derive features of quantum theory and computation. However, this approach left many wondering ‘where’s the beef?’ In other words, was this new approach capable of producing new results, or was it simply an aesthetically pleasing way to restate stuff we already know? The aim of this sequel paper is to say ‘here’s the beef!’, and highlight some of the major results of the approach advocated in Kindergarten Quantum Mechanics, and how they are being applied to tackle practical problems on real quantum computers. Toward that end, we will focus mainly on what has become the Swiss army knife of the pictorial formalism: the ZX-calculus, a graphical tool for representing and manipulating complex linear maps on 2 dimensional space. First we look at some of the ideas behind the ZX-calculus, comparing and contrasting it with the usual quantum circuit formalism. We then survey results from the past 2 years falling into three categories: (1) completeness of the rules of the ZX-calculus, (2) state-of-the-art quantum circuit optimisation results in commercial and open-source quantum compilers relying on ZX, and (3) the use of ZX in translating realworld stuff like natural language into quantum circuits that can be run on today’s (very limited) quantum hardware. We also take the title literally, and outline an ongoing experiment aiming to show that ZX-calculus enables children to do cutting-edge quantum computing stuff. If anything, this would truly confirm that ‘kindergarten quantum mechanics’ wasn’t just a joke.

[1]  Michael Hanks,et al.  Effective Compression of Quantum Braided Circuits Aided by ZX-Calculus , 2019, Physical Review X.

[2]  Chen Zhao,et al.  Analyzing the barren plateau phenomenon in training quantum neural network with the ZX-calculus , 2021, Quantum.

[3]  Aleks Kissinger,et al.  Strong Complementarity and Non-locality in Categorical Quantum Mechanics , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[4]  Aleks Kissinger,et al.  PyZX: Large Scale Automated Diagrammatic Reasoning , 2019, Electronic Proceedings in Theoretical Computer Science.

[5]  Joachim Lambek,et al.  Type Grammar Revisited , 1997, LACL.

[6]  Aleks Kissinger,et al.  Generalised compositional theories and diagrammatic reasoning , 2015, 1506.03632.

[7]  Vladimir Zamdzhiev,et al.  The ZX calculus is incomplete for quantum mechanics , 2014, QPL.

[8]  B. Coecke,et al.  Quantum Natural Language Processing on Near-Term Quantum Computers , 2020, QPL.

[9]  Bill Edwards,et al.  Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.

[10]  Quanlong Wang,et al.  Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities , 2020, TQC.

[11]  Austin G. Fowler,et al.  Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation , 2018, Quantum.

[12]  Bob Coecke,et al.  Tutorial: Graphical Calculus for Quantum Circuits , 2012, RC.

[13]  Dusko Pavlovic,et al.  Monoidal computer I: Basic computability by string diagrams , 2012, Inf. Comput..

[14]  Quanlong Wang,et al.  A universal completion of the ZX-calculus , 2017, ArXiv.

[15]  Filippo Bonchi,et al.  Diagrammatic algebra: from linear to concurrent systems , 2019, Proc. ACM Program. Lang..

[16]  B. Coecke Kindergarten Quantum Mechanics , 2005, quant-ph/0510032.

[17]  John C. Baez,et al.  Categories in Control , 2014, 1405.6881.

[18]  Aleks Kissinger,et al.  The GHZ/W-calculus contains rational arithmetic , 2011, HPC.

[19]  Nicolai Friis,et al.  Entangling logical qubits with lattice surgery , 2020, Nature.

[20]  S. Majid Foundations of Quantum Group Theory , 1995 .

[21]  Bob Coecke,et al.  Reconstructing quantum theory from diagrammatic postulates , 2018, Quantum.

[22]  Fabio Gadducci,et al.  String Diagram Rewrite Theory I: Rewriting with Frobenius Structure , 2020, ArXiv.

[23]  Stefano Gogioso,et al.  Categorical Probabilistic Theories , 2017, QPL.

[24]  Aleks Kissinger,et al.  A categorical semantics for causal structure , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[25]  Miriam Backens,et al.  A Complete Graphical Calculus for Spekkens’ Toy Bit Theory , 2014, 1411.1618.

[26]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[27]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[28]  Sean Tull,et al.  Integrated Information in Process Theories , 2020, ArXiv.

[29]  Simon Perdrix,et al.  Rewriting Measurement-Based Quantum Computations with Generalised Flow , 2010, ICALP.

[30]  Aleks Kissinger,et al.  Reducing the number of non-Clifford gates in quantum circuits , 2020, Physical Review A.

[31]  Richie Yeung,et al.  Diagrammatic Design and Study of Ansätze for Quantum Machine Learning , 2020, ArXiv.

[32]  Simon Perdrix,et al.  A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.

[33]  B. Coecke,et al.  A graphical calculus for quantum observables , 2007 .

[34]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[35]  Stefano Gogioso,et al.  Giving Operational Meaning to the Superposition of Causal Orders , 2020, Electronic Proceedings in Theoretical Computer Science.

[36]  Miriam Backens,et al.  The ZX-calculus is complete for the single-qubit Clifford+T group , 2014, QPL.

[37]  Amar Hadzihasanovic,et al.  A Diagrammatic Axiomatisation for Qubit Entanglement , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[38]  W. Zeng,et al.  Fourier transforms from strongly complementary observables , 2015, 1501.04995.

[39]  Aleks Kissinger,et al.  Open-graphs and monoidal theories† , 2010, Mathematical Structures in Computer Science.

[40]  Ross Duncan,et al.  t|ket⟩: a retargetable compiler for NISQ devices , 2020, Quantum Science and Technology.

[41]  Filippo Bonchi,et al.  Contextual Equivalence for Signal Flow Graphs , 2020, FoSSaCS.

[42]  B. Shi,et al.  Towards Minimality of Clifford + T ZX-Calculus , 2018 .

[43]  Brendan Fong,et al.  A Compositional Framework for Passive Linear Networks , 2015, 1504.05625.

[44]  Renaud Vilmart,et al.  A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum Mechanics , 2018, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[45]  Bob Coecke,et al.  Deep Beauty: A Universe of Processes and Some of Its Guises , 2010, 1009.3786.

[46]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[47]  Stefano Gogioso,et al.  Density Hypercubes, Higher Order Interference and Hyper-decoherence: A Categorical Approach , 2018, QI.

[48]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[49]  Simon Perdrix,et al.  A Generic Normal Form for ZX-Diagrams and Application to the Rational Angle Completeness , 2018, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[50]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[51]  Mehrnoosh Sadrzadeh,et al.  Experimental Support for a Categorical Compositional Distributional Model of Meaning , 2011, EMNLP.

[52]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[53]  Pierre Cartier,et al.  A Primer of Hopf Algebras , 2007 .

[54]  J. V. D. Wetering ZX-calculus for the working quantum computer scientist , 2020, 2012.13966.

[55]  Quanlong Wang,et al.  Completeness of the ZX-calculus for Pure Qubit Clifford+T Quantum Mechanics , 2018, 1801.07993.

[56]  Aleks Kissinger,et al.  Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus , 2019, Quantum.

[57]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[58]  A. Kissinger,et al.  Universal MBQC with generalised parity-phase interactions and Pauli measurements , 2017, Quantum.

[59]  Miriam Backens,et al.  Making the stabilizer ZX-calculus complete for scalars , 2015, 1507.03854.

[60]  Bill Edwards,et al.  Three qubit entanglement within graphical Z/X-calculus , 2011, HPC.

[61]  D. Plump,et al.  A Diagrammatic Approach to Quantum Dynamics , 2019, CALCO.

[62]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[63]  Pawel Sobocinski,et al.  Representations of Petri Net Interactions , 2010, CONCUR.

[64]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[65]  Hartmut Ehrig,et al.  Graph-Grammars: An Algebraic Approach , 1973, SWAT.

[66]  Aleks Kissinger,et al.  The Compositional Structure of Multipartite Quantum Entanglement , 2010, ICALP.

[67]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[68]  Stefano Gogioso Categorical Semantics for Schrödinger ’ s Equation , 2015 .

[69]  Bob Coecke,et al.  Quantum Algorithms for Compositional Natural Language Processing , 2016, SLPCS@QPL.

[70]  Stephen Clark,et al.  The Frobenius anatomy of word meanings I: subject and object relative pronouns , 2013, J. Log. Comput..

[71]  Quanlong Wang,et al.  ZX-Rules for 2-Qubit Clifford+T Quantum Circuits , 2018, RC.

[72]  Filippo Bonchi,et al.  Graphical Affine Algebra , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[73]  Bob Coecke,et al.  Trichromatic Open Digraphs for Understanding Qubits , 2011, ArXiv.

[74]  Ross Duncan,et al.  Interacting Frobenius Algebras are Hopf , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[75]  Bill Edwards,et al.  Toy Quantum Categories (Extended Abstract) , 2011, QPL/DCM@ICALP.

[76]  Filippo Bonchi,et al.  Full Abstraction for Signal Flow Graphs , 2015, POPL.

[77]  Miriam Backens,et al.  The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.

[78]  Bob Coecke,et al.  Foundations for Near-Term Quantum Natural Language Processing , 2020, ArXiv.

[79]  Simon Perdrix,et al.  Supplementarity is Necessary for Quantum Diagram Reasoning , 2015, MFCS.

[80]  Simon Perdrix,et al.  Pivoting makes the ZX-calculus complete for real stabilizers , 2013, QPL.

[81]  Filippo Bonchi,et al.  Interacting Hopf Algebras , 2014, ArXiv.

[82]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[83]  Ciarán M Lee,et al.  A no-go theorem for theories that decohere to quantum mechanics , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[84]  Martha Lewis,et al.  Interacting Conceptual Spaces , 2016, SLPCS@QPL.

[85]  Voor Een,et al.  The Algebraic Approach , 2005 .

[86]  Aleks Kissinger,et al.  Quantomatic: A proof assistant for diagrammatic reasoning , 2015, CADE.

[87]  Stefano Gogioso,et al.  Generalised Mermin-type non-locality arguments , 2017, Log. Methods Comput. Sci..

[88]  Simon Perdrix,et al.  Diagrammatic Reasoning beyond Clifford+T Quantum Mechanics , 2018, LICS.

[89]  Neil Ghani,et al.  A compositional approach to economic game theory , 2016, ArXiv.

[90]  Bob Coecke Terminality Implies No-signalling ...and Much More Than That , 2016, New Generation Computing.

[91]  Dan R. Ghica,et al.  Categorical semantics of digital circuits , 2016, 2016 Formal Methods in Computer-Aided Design (FMCAD).

[92]  Simon Perdrix,et al.  Pauli Fusion: a computational model to realise quantum transformations from ZX terms , 2019 .

[93]  Filippo Bonchi,et al.  Interacting Bialgebras Are Frobenius , 2014, FoSSaCS.

[94]  Stefano Gogioso,et al.  Categorical Semantics for Time Travel , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[95]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[96]  Simon Perdrix,et al.  Graph States and the Necessity of Euler Decomposition , 2009, CiE.

[97]  Stephen Clark,et al.  Mathematical Foundations for a Compositional Distributional Model of Meaning , 2010, ArXiv.

[98]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[99]  Amar Hadzihasanovic,et al.  The algebra of entanglement and the geometry of composition , 2017, ArXiv.

[100]  Bob Coecke,et al.  Leaks: Quantum, Classical, Intermediate and More , 2017, Entropy.

[101]  Aleks Kissinger,et al.  Picturing Quantum Processes , 2017 .

[102]  Renaud Vilmart,et al.  A ZX-Calculus with Triangles for Toffoli-Hadamard, Clifford+T, and Beyond , 2018, QPL.

[103]  Simon Perdrix,et al.  Towards a Minimal Stabilizer ZX-calculus , 2017, Log. Methods Comput. Sci..

[104]  W. Marsden I and J , 2012 .

[105]  A. Kissinger,et al.  ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity , 2018, Electronic Proceedings in Theoretical Computer Science.

[106]  Dimitri Kartsaklis,et al.  A Study of Entanglement in a Categorical Framework of Natural Language , 2014, QPL.

[107]  Quanlong Wang,et al.  Two complete axiomatisations of pure-state qubit quantum computing , 2018, LICS.

[108]  Camilo Miguel Signorelli,et al.  A Compositional Model of Consciousness Based on Consciousness-Only , 2020, Entropy.

[109]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[110]  Dominic Horsman,et al.  The ZX calculus is a language for surface code lattice surgery , 2017, Quantum.

[111]  Jianxin Chen,et al.  A finite presentation of CNOT-dihedral operators , 2016, QPL.