Compatible triangulations of spatial decompositions

We describe a general algorithm to produce compatible 3D triangulations from spatial decompositions. Such triangulations match edges and faces across spatial cell boundaries, solving several problems in graphics and visualization including the crack problem found in adaptive isosurface generation, triangulation of arbitrary grids (including unstructured grids), clipping, and the interval tetrahedrization problem. The algorithm produces compatible triangulations on a cell-by-cell basis, using a modified Delaunay triangulation with a simple point ordering rule to resolve degenerate cases and produce unique triangulations across cell boundaries. The algorithm is naturally parallel since it requires no neighborhood cell information, only a unique, global point numbering. We show application of this algorithm to adaptive contour generation; tetrahedrization of unstructured meshes; clipping and interval volume mesh generation.

[1]  Robert M. O'Bara,et al.  Automatic p-version mesh generation for curved domains , 2004, Engineering with Computers.

[2]  Tony Field,et al.  A Simple Recursive Tessellator for Adaptive Surface Triangulation , 2000, J. Graphics, GPU, & Game Tools.

[3]  Gregory M. Nielson,et al.  Interval volume tetrahedrization , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[4]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[5]  Andrew H. Gee,et al.  Regularised marching tetrahedra: improved iso-surface extraction , 1999, Comput. Graph..

[6]  Andrew Witkin,et al.  Physically Based Modeling: Principles and Practice , 1997 .

[7]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[8]  Arie E. Kaufman,et al.  Multiresolution tetrahedral framework for visualizing regular volume data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[9]  Chris Henze,et al.  Feature Extraction of Separation and Attachment Lines , 1999, IEEE Trans. Vis. Comput. Graph..

[10]  Mark Hall,et al.  Adaptive polygonalization of implicitly defined surfaces , 1990, IEEE Computer Graphics and Applications.

[11]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[12]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[13]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[14]  Francis Y. L. Chin,et al.  Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time , 1999, SIAM J. Comput..

[15]  James H. Oliver,et al.  Generalized unstructured decimation [computer graphics] , 1996, IEEE Computer Graphics and Applications.

[16]  W. Schroeder Geometric triangulations, with application to fully automatic three-dimensional mesh generation , 1992 .

[17]  Joseph S. B. Mitchell,et al.  The Lazy Sweep Ray Casting Algorithm for Rendering Irregular Grids , 1997, IEEE Trans. Vis. Comput. Graph..

[18]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[19]  John Shalf,et al.  Extraction of Crack-free Isosurfaces from Adaptive Mesh Refinement Data , 2001, VisSym.

[20]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[21]  Paolo Cignoni,et al.  Tetrahedra Based Volume Visualization , 1997, VisMath.

[22]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[23]  Roni Yagel,et al.  Octree-based decimation of marching cubes surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[24]  William E. Lorensen,et al.  The visualization toolkit (2nd ed.): an object-oriented approach to 3D graphics , 1998 .

[25]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[26]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[27]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[28]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[29]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[30]  Rüdiger Westermann,et al.  Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces , 1999, The Visual Computer.

[31]  Franco P. Preparata,et al.  Sequencing-by-hybridization revisited: the analog-spectrum proposal , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[32]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[33]  David A. Lane,et al.  Interactive Time-Dependent Particle Tracing Using Tetrahedral Decomposition , 1996, IEEE Trans. Vis. Comput. Graph..

[34]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[35]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .