Zero-gap materials for future spintronics, electronics and optics

Electrons carry both charge and spin. The processing of information in conventional electronic devices is based only on the charge of the electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors and insulators are the basic materials that constitute the components of electronic devices, and these have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals, magnetic semiconductors, dilute magnetic semiconductors and magnetic insulators are the materials that will form the basis for spintronic devices. Materials having a zero-energy band gap are a special class of these materials that exhibit some fascinating and superior electronic properties compared to materials with a non-zero energy gap. This article reviews a range of materials with zero-gap band structures, focusing on materials with quadratic and linear symmetrical dispersions, disorder-induced linear dispersions, asymmetrical linear dispersions and topological insulating states. These materials all have intriguing physical properties and numerous potential practical applications in spintronics, electronics, optics and sensors.

[1]  I. M. Tsidilkovski Electron Spectrum of Gapless Semiconductors , 1997 .

[2]  Shou-Cheng Zhang,et al.  Topological states of quantum matter , 2008 .

[3]  T. F. Rosenbaum,et al.  Large magnetoresistance in non-magnetic silver chalcogenides , 1997, Nature.

[4]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[5]  W. Liu,et al.  Collective magnetic behavior of graphene nanohole superlattices , 2008 .

[6]  S. Groves,et al.  BAND STRUCTURE OF GRAY TIN , 1963 .

[7]  X. Hu,et al.  Possible half metallic antiferromagnet in a hole-doped perovskite cuprate predicted by first-principles calculations. , 2008, Physical review letters.

[8]  Chao Zhang,et al.  Orientation dependence of the optical spectra in graphene at high frequencies , 2007, 0709.3700.

[9]  Motohiko Ezawa,et al.  Peculiar width dependence of the electronic properties of carbon nanoribbons , 2006, cond-mat/0602480.

[10]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[11]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[12]  N. M. R. Peres,et al.  Electronic properties of disordered two-dimensional carbon , 2006 .

[13]  E. H. Putley,et al.  Preparation and properties of HgTe and mixed crystals of HgTe-CdTe , 1959 .

[14]  T. C. Ozawa,et al.  Metal-insulator transition and large thermoelectric power of a layered palladium oxide: PbPdO2 , 2005 .

[15]  L. Fu,et al.  Surface states and topological invariants in three-dimensional topological insulators: Application to Bi 1 − x Sb x , 2008 .

[16]  D. V. Khveshchenko,et al.  Electron localization properties in graphene. , 2006, Physical review letters.

[17]  Xiaolin Wang,et al.  Proposal for a new class of materials: spin gapless semiconductors. , 2008, Physical review letters.

[18]  B Andrei Bernevig,et al.  Quantum spin Hall effect. , 2005, Physical review letters.

[19]  R. Roy On the $Z_2$ classification of Quantum Spin Hall Models , 2006, cond-mat/0604211.

[20]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[21]  P. B. Littlewood,et al.  Non-saturating magnetoresistance in heavily disordered semiconductors , 2003, Nature.

[22]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[23]  Oleg V. Yazyev,et al.  Defect-induced magnetism in graphene , 2007 .

[24]  N. Reyren,et al.  Electric field control of the LaAlO3/SrTiO3 interface ground state , 2008, Nature.

[25]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[26]  B L Altshuler,et al.  Weak-localization magnetoresistance and valley symmetry in graphene. , 2006, Physical review letters.

[27]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[28]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[29]  Y. Nishio,et al.  Electronic phases in an organic conductor α-(BEDT-TTF)2I3 : Ultra narrow gap semiconductor, superconductor, metal, and charge-ordered insulator , 2006 .

[30]  Jan Kunes,et al.  Quantum spin Hall effect in a transition metal oxide Na2IrO3. , 2008, Physical review letters.

[31]  E. Lieb,et al.  Two theorems on the Hubbard model. , 1989, Physical review letters.

[32]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[33]  Antoni Rogalski,et al.  HgCdTe infrared detector material: history, status and outlook , 2005 .

[34]  Reifenberger,et al.  Reduction of charge-center scattering rate in Hg1-xFexSe. , 1987, Physical review. B, Condensed matter.

[35]  Y. Nishio,et al.  Effects of Uniaxial Strain on Transport Properties of Organic Conductor α-(BEDT-TTF)2I3 and Discovery of Superconductivity , 2002 .

[36]  F. Liu,et al.  A unified geometric rule for designing nanomagnetism in graphene , 2008 .

[37]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[38]  D. Schweitzer,et al.  Synthesis, Structure and Physical Properties of a Two-Dimensional Organic Metal, Di[bis(ethylenedithiolo)tetrathiofulvalene] triiodide, (BEDT-TTF)+ 2 I− 3 , 1984 .

[39]  K.H.J. Buschow,et al.  New Class of Materials: Half-Metallic Ferromagnets , 1983 .

[40]  Bing-Lin Gu,et al.  Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. , 2007, Nano letters.

[41]  M. Saboungi,et al.  Band-gap tuning and linear magnetoresistance in the silver chalcogenides. , 2002, Physical review letters.

[42]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[43]  T. Rosenbaum,et al.  Classical and quantum routes to linear magnetoresistance. , 2008, Nature materials.

[44]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[45]  I. M. T︠S︡idilʹkovskiĭ Electron spectrum of gapless semiconductors , 1996 .

[46]  G. Fecher,et al.  Spintronics: a challenge for materials science and solid-state chemistry. , 2007, Angewandte Chemie.

[47]  U Zeitler,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[48]  Chao Zhang,et al.  Colossal Electroresistance and Giant Magnetoresistance in Doped PbPdO2 Thin Films , 2009 .

[49]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[50]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[51]  J. Cao,et al.  Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime. , 2009, Physical review letters.

[52]  Effect of disorder on transport in graphene. , 2006, Physical review letters.

[53]  M. Cardona,et al.  Energy-Band Structure and Optical Spectrum of Grey Tin , 1970 .

[54]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[55]  Chao Zhang,et al.  Orbital magnetization of graphene and graphene nanoribbons , 2008 .

[56]  X. Qi,et al.  Helical edge and surface states in HgTe quantum wells and bulk insulators , 2007, 0705.1516.

[57]  H. Leuken,et al.  Half-metallic antiferromagnets. , 1995 .

[58]  B. Montanari,et al.  Electronic structure and magnetic properties of graphitic ribbons , 2007 .

[59]  S. Sarma,et al.  Carrier transport in two-dimensional graphene layers. , 2006, Physical review letters.

[60]  M I Katsnelson,et al.  Strong suppression of weak localization in graphene. , 2006, Physical review letters.

[61]  Warren E. Pickett,et al.  Spin-density-functional-based search for half-metallic antiferromagnets , 1997, cond-mat/9709100.

[62]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[63]  A. Kuzmenko,et al.  Universal optical conductance of graphite. , 2007, Physical review letters.

[64]  Satoshi Okamoto,et al.  Electronic reconstruction at an interface between a Mott insulator and a band insulator , 2004, Nature.

[65]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[66]  H. Hwang Atomic Control of the Electronic Structure at Complex Oxide Heterointerfaces , 2006 .

[67]  Robust transport properties in graphene. , 2006, Physical review letters.

[68]  Chao Zhang,et al.  Strong terahertz conductance of graphene nanoribbons under a magnetic field , 2008 .

[69]  L. Balents,et al.  Topological invariants of time-reversal-invariant band structures , 2007 .

[70]  Tsuneya Ando,et al.  Hall conductivity of a two-dimensional graphite system , 2002 .

[71]  Tsuneya Ando,et al.  Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice. , 2002, Physical review letters.

[72]  E. Takayama-Muromachi,et al.  Magnetic and transport properties of the layered perovskite system Sr2–yYyCoO4 (0<=y<=1) , 2005 .

[73]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[74]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[75]  Andrew G. Glen,et al.  APPL , 2001 .