Computing arrival cost parameters in moving horizon estimation using sampling based filters

[1]  R. Bucy,et al.  Digital synthesis of non-linear filters , 1971 .

[2]  J. Craggs Applied Mathematical Sciences , 1973 .

[3]  C. Hsu,et al.  Cell-To-Cell Mapping A Method of Global Analysis for Nonlinear Systems , 1987 .

[4]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[5]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[6]  Jay H. Lee,et al.  Least Squares Formulation of State Estimation , 1994 .

[7]  M. Agarwal,et al.  A discretized nonlinear state estimator for batch processes , 1995 .

[8]  Thomas E Marlin,et al.  Process Control , 1995 .

[9]  Jay H. Lee,et al.  A moving horizon‐based approach for least‐squares estimation , 1996 .

[10]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[11]  Jay H. Lee,et al.  Constrained linear state estimation - a moving horizon approach , 2001, Autom..

[12]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[13]  C. V. Rao,et al.  Constrained process monitoring: Moving‐horizon approach , 2002 .

[14]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[15]  Andrei Romanenko,et al.  The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study , 2004, Comput. Chem. Eng..

[16]  B. Bakshi,et al.  Bayesian estimation via sequential Monte Carlo sampling: Unconstrained nonlinear dynamic systems , 2004 .

[17]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[18]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[19]  Stephen J. Wright,et al.  Closed‐loop behavior of nonlinear model predictive control , 2004 .

[20]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[21]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..

[22]  John B. Moore,et al.  Optimal State Estimation , 2006 .

[23]  Torsten Söderström,et al.  Advanced point-mass method for nonlinear state estimation , 2006, Autom..

[24]  P. Vachhani,et al.  Robust and reliable estimation via Unscented Recursive Nonlinear Dynamic Data Reconciliation , 2006 .

[25]  Keyu Li,et al.  Bayesian state estimation of nonlinear systems using approximate aggregate markov chains , 2006 .

[26]  Keyu Li,et al.  8th International IFAC Symposium on Dynamics and Control of Process Systems CONSTRAINED EXTENDED KALMAN FILTER FOR NONLINEAR STATE ESTIMATION , 2007 .

[27]  Prem K. Goel,et al.  Bayesian estimation via sequential Monte Carlo sampling - Constrained dynamic systems , 2007, Autom..

[28]  S. Ungarala,et al.  Constrained Bayesian State Estimation Using a Cell Filter , 2008 .

[29]  C. Gouriéroux,et al.  Non-Gaussian State-Space Modeling of Nonstationary Time Series , 2008 .

[30]  Tao Chen,et al.  Dynamic data rectification using particle filters , 2008, Comput. Chem. Eng..

[31]  Bjarne A. Foss,et al.  Applying the unscented Kalman filter for nonlinear state estimation , 2008 .

[32]  Keyu Li,et al.  The use of a cell filter for state estimation in closed-loop NMPC of low dimensional systems , 2009 .

[33]  Sridhar Ungarala Comments on “Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation” , 2009 .

[34]  Juergen Hahn,et al.  Computation of arrival cost for moving horizon estimation via unscented Kalman filtering , 2009 .