Diagnosis of penicillin allergy: a MOFs-based composite hydrogel for detecting β-lactamase in serum.

An as-synthesized MOFs-based hydrogel exhibits high sensitivity for β-lactamase through an "ON-OFF-OFF-ON" luminescence trigger. It allows achieving an unprecedented strategy for the judgement of penicillin allergy via luminescence detection of β-lactamase in serum.

[1]  Hexin Xie,et al.  A Carbapenem‐Based Off–On Fluorescent Probe for Specific Detection of Metallo‐β‐Lactamase Activities , 2018, Chembiochem : a European journal of chemical biology.

[2]  B. Yan,et al.  Luminescent Hybrid Membrane-Based Logic Device: From Enantioselective Discrimination to Read-Only Memory for Information Processing. , 2018, ACS applied materials & interfaces.

[3]  Ning Gan,et al.  A pyrene-involved luminescent MOF for monitoring 1-hydroxypyrene, a biomarker for human intoxication of PAH carcinogens. , 2018, The Analyst.

[4]  Sarah H. Hewitt,et al.  Application of lanthanide luminescence in probing enzyme activity. , 2018, Chemical communications.

[5]  B. Yan,et al.  Ln(III)-Functionalized Metal-Organic Frameworks Hybrid System: Luminescence Properties and Sensor for trans, trans-Muconic Acid as a Biomarker of Benzene. , 2018, Inorganic chemistry.

[6]  Ning Gan,et al.  Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF , 2018, Sensors and Actuators B: Chemical.

[7]  Tao Chen,et al.  Real-Time in Situ Investigation of Supramolecular Shape Memory Process by Fluorescence Switching , 2018 .

[8]  B. Yan,et al.  Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents. , 2018, ACS applied materials & interfaces.

[9]  P. Cheng,et al.  Rapid Detection of the Biomarkers for Carcinoid Tumors by a Water Stable Luminescent Lanthanide Metal–Organic Framework Sensor , 2018 .

[10]  B. Yan,et al.  Functionalization of Metal–Organic Frameworks for Photoactive Materials , 2018, Advanced materials.

[11]  Gregory S. Day,et al.  Luminescent sensors based on metal-organic frameworks , 2018 .

[12]  B. Yan Lanthanide-Functionalized Metal-Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing. , 2017, Accounts of chemical research.

[13]  B. Yan,et al.  A Double‐Stimuli‐Responsive Fluorescent Center for Monitoring of Food Spoilage based on Dye Covalently Modified EuMOFs: From Sensory Hydrogels to Logic Devices , 2017, Advanced materials.

[14]  M. D. de Koning,et al.  Degradation of Paraoxon and the Chemical Warfare Agents VX, Tabun, and Soman by the Metal-Organic Frameworks UiO-66-NH2, MOF-808, NU-1000, and PCN-777. , 2017, Inorganic chemistry.

[15]  B. Yan,et al.  A Luminescent 3d-4f-4d MOF Nanoprobe as a Diagnosis Platform for Human Occupational Exposure to Vinyl Chloride Carcinogen. , 2017, Inorganic chemistry.

[16]  U. Maitra,et al.  Luminescence Resonance Energy Transfer in a Multiple-Component, Self-Assembled Supramolecular Hydrogel. , 2017, Angewandte Chemie.

[17]  F. Zhang,et al.  A Lanthanide MOF Thin-Film Fixed with Co3 O4 Nano-Anchors as a Highly Efficient Luminescent Sensor for Nitrofuran Antibiotics. , 2017, Chemistry.

[18]  M. Antonietti,et al.  A tale of two membranes: from poly (ionic liquid) to metal–organic framework hybrid nanoporous membranes via pseudomorphic replacement , 2017 .

[19]  Hexin Xie,et al.  Detection of Carbapenemase-Producing Organisms with a Carbapenem-Based Fluorogenic Probe. , 2017, Angewandte Chemie.

[20]  Xiping Cui,et al.  Fluorescent sensor assay for β-lactamase in milk based on a combination of aptamer and graphene oxide , 2017 .

[21]  B. Yan,et al.  Determination of Urinary 1‐Hydroxypyrene for Biomonitoring of Human Exposure to Polycyclic Aromatic Hydrocarbons Carcinogens by a Lanthanide‐functionalized Metal‐Organic Framework Sensor , 2017 .

[22]  Hexin Xie,et al.  A Self-Immobilizing and Fluorogenic Probe for β-Lactamase Detection. , 2016, Chemistry, an Asian journal.

[23]  Seth M. Cohen,et al.  High MOF loading in mixed-matrix membranes utilizing styrene/butadiene copolymers. , 2016, Chemical communications.

[24]  Ming Li,et al.  Highly Stable Zr(IV)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. , 2016, Journal of the American Chemical Society.

[25]  M. Esteban,et al.  Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples. , 2015, Talanta.

[26]  Y. Liu,et al.  Core–Shell Upconversion Nanoparticle@Metal–Organic Framework Nanoprobes for Luminescent/Magnetic Dual‐Mode Targeted Imaging , 2015, Advanced materials.

[27]  Y. Lan,et al.  An ultrastable porous metal–organic framework luminescent switch towards aromatic compounds , 2015 .

[28]  Syamantak Roy,et al.  Lanthanide–organic frameworks for gas storage and as magneto-luminescent materials , 2014 .

[29]  H. Shi,et al.  Engineering the stereochemistry of cephalosporin for specific detection of pathogenic carbapenemase-expressing bacteria. , 2014, Angewandte Chemie.

[30]  P. Cheng,et al.  Highly selective luminescent sensing of fluoride and organic small-molecule pollutants based on novel lanthanide metal-organic frameworks. , 2013, Inorganic chemistry.

[31]  Luís D. Carlos,et al.  Luminescent multifunctional lanthanides-based metal-organic frameworks. , 2011, Chemical Society reviews.

[32]  Bonnie O. Leung,et al.  Cadmium(II) complex formation with cysteine and penicillamine. , 2009, Inorganic chemistry.

[33]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[34]  F. Quignard,et al.  Photoluminescent porous alginate hybrid materials containing lanthanide ions. , 2008, Biomacromolecules.

[35]  T. Smyth,et al.  Exploring the chemistry of penicillin as a β-lactamase-dependent prodrug , 2007 .

[36]  E. Werneck-Barroso,et al.  Food safety evaluation : Detection and confirmation of chloramphenicol in milk by high performance liquid chromatography-tandem mass spectrometry , 2006 .

[37]  T. Walley,et al.  Allergy to penicillin , 1991 .

[38]  R. Finch The penicillins today. , 1990, BMJ.

[39]  N. Brassard,et al.  Decrease of penicillin G residue incidence in milk: A fact or an artefact? , 1987 .

[40]  G. Wendel,et al.  Penicillin allergy and desensitization in serious infections during pregnancy. , 1985, The New England journal of medicine.