Correlation modelling on the sphere using a generalized diffusion equation

An important element of a data assimilation system is the statistical model used for representing the correlations of background error. This paper describes a practical algorithm that can be used to model a large class of two‐ and three‐dimensional, univariate correlation functions on the sphere. Application of the algorithm involves a numerical integration of a generalized diffusion‐type equation (GDE). The GDE is formed by replacing the Laplacian operator in the classical diffusion equation by a polynomial in the Laplacian. The integral solution of the GDE defines, after appropriate normalization, a correlation operator on the sphere. The kernel of the correlation operator is an isotropic correlation function. The free parameters controlling the shape and length‐scale of the correlation function are the products kpT, p = 1, 2, …, where (‐1)pkp is a weighting (‘diffusion’) coefficient (kp > 0) attached to the Laplacian with exponent p, and T is the total integration ‘time’. For the classical diffusion equation (a special case of the GDE with kp = 0 for all p > 1) the correlation function is shown to be well approximated by a Gaussian with length‐scale equal to (2k1T)1/2.

[1]  N. B. Ingleby,et al.  The Met. Office global three‐dimensional variational data assimilation scheme , 2000 .

[2]  Richard G. Forbes,et al.  Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting , 2000 .

[3]  Rosemary Munro,et al.  Diagnosis of background errors for radiances and other observable quantities in a variational data assimilation scheme, and the explanation of a case of poor convergence , 2000 .

[4]  James A. Carton,et al.  A Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950–95. Part I: Methodology , 2000 .

[5]  T. Gneiting Correlation functions for atmospheric data analysis , 1999 .

[6]  Stéphane Laroche,et al.  Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part I: The global analysis , 1999 .

[7]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .

[8]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). II: Structure functions , 1998 .

[9]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[10]  P. Delecluse,et al.  An OGCM Study for the TOGA Decade. Part I: Role of Salinity in the Physics of the Western Pacific Fresh Pool , 1998 .

[11]  John K. Dukowicz,et al.  Isoneutral Diffusion in a z-Coordinate Ocean Model , 1998 .

[12]  Ming Ji,et al.  An Improved Coupled Model for ENSO Prediction and Implications for Ocean Initialization. Part I: The Ocean Data Assimilation System , 1998 .

[13]  M. Gavart,et al.  Isopycnal EOFs in the Azores Current Region: A Statistical Tool forDynamical Analysis and Data Assimilation , 1997 .

[14]  Philippe Courtier,et al.  Dual formulation of four‐dimensional variational assimilation , 1997 .

[15]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model, II: Analysis and implementation , 1997 .

[16]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[17]  Gurvan Madec,et al.  A global ocean mesh to overcome the North Pole singularity , 1996 .

[18]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[19]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[20]  Peter Talkner,et al.  Some remarks on spatial correlation function models , 1993 .

[21]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[22]  A. Bennett Inverse Methods in Physical Oceanography: Frontmatter , 1992 .

[23]  A. Lorenc Iterative analysis using covariance functions and filters , 1992 .

[24]  John Derber,et al.  A Global Oceanic Data Assimilation System , 1989 .

[25]  Herschel L. Mitchell,et al.  Horizontal structure of hemispheric forecast error correlations for geopotential and temperature , 1986 .

[26]  Anthony Hollingsworth,et al.  The statistical structure of short-range forecast errors as determined from radiosonde data , 1986 .

[27]  A. Hollingsworth,et al.  The statistical structure of short-range forecast errors as determined from radiosonde data Part II: The covariance of height and wind errors , 1986 .

[28]  M. Redi Oceanic Isopycnal Mixing by Coordinate Rotation , 1982 .

[29]  G. Wahba,et al.  Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .

[30]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[31]  Paul R. Julian,et al.  On Some Properties of Correlation Functions Used in Optimum Interpolation Schemes , 1975 .

[32]  Geoffrey S. Watson,et al.  "Normal" Distribution Functions on Spheres and the Modified Bessel Functions , 1974 .

[33]  G. Arfken Mathematical Methods for Physicists , 1967 .

[34]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[35]  Andrew C. Lorenc,et al.  Development of an Operational Variational Assimilation Scheme (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[36]  John Derber,et al.  The NCEP Global Analysis System : Recent Improvements and Future Plans (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[37]  Janet Sprintall,et al.  Space and time scales for optimal interpolation of temperature — Tropical Pacific Ocean , 1991 .

[38]  Roger Barlow,et al.  Statistics : a guide to the use of statistical methods in thephysical sciences , 1989 .

[39]  A. Lorenc Optimal nonlinear objective analysis , 1988 .

[40]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[41]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .