Ground penetrating radar

Ground penetrating radar (GPR) provides almost continuous, high resolution profiles of the shallow subsurface which cannot be achieved by any other geophysical technique. Applications of GPR in geomorphology have increased significantly in recent years due to an increased awareness of the technique, combined with improvements in the equipment which make it more portable, more reliable, and easier to use. The ease of use has presented some problems due to unrealistic expectations, inappropriate survey design, and questionable interpretations. Examples are included to illustrate common ‘problems’ as well as successful GPR surveys.

[1]  J. Leckebusch,et al.  Ground‐penetrating radar: a modern three‐dimensional prospection method , 2003 .

[2]  T. Murray,et al.  Imaging glacial sediment inclusions in 3‐D using ground‐penetrating radar at Kongsvegen, Svalbard , 2010 .

[3]  A. P. Annan GPR—History, Trends, and Future Developments , 2002 .

[4]  A. P. Annan Chapter 1 – Electromagnetic Principles of Ground Penetrating Radar , 2009 .

[5]  M. Larocque,et al.  Determining the number of manual measurements required to improve peat thickness estimations by ground penetrating radar , 2009 .

[6]  Andrew C. Fowler,et al.  Glaciers and Ice Sheets , 2011 .

[7]  M. Collins,et al.  Use of soil information to determine application of ground penetrating radar , 1995 .

[8]  D. Daniels Ground Penetrating Radar , 2005 .

[9]  Charles S Bristow,et al.  Internal structure of aeolian dunes in Abu Dhabi determined using ground‐penetrating radar , 1996 .

[10]  E. McKee,et al.  Primary Structures of a Seif Dune and Associated Deposits in Libya , 1964 .

[11]  J. Porsani,et al.  Upper Pleistocene to Holocene peatland evolution in Southern Brazilian highlands as depicted by radar stratigraphy, sedimentology and palynology , 2012, Quaternary Research.

[12]  L. Clemmensen,et al.  Sea‐level markers identified in ground‐penetrating radar data collected across a modern beach ridge system in a microtidal regime , 2009 .

[13]  I. Buynevich,et al.  Dune advance into a coastal forest, equatorial Brazil: A subsurface perspective , 2010 .

[14]  J. Bridge,et al.  Ground‐penetrating radar and coring used to study the large‐scale structure of point‐bar deposits in three dimensions , 1995 .

[15]  Marcel G. Schaap,et al.  Radar reflections from sedimentary structures in the vadose zone , 2003, Geological Society, London, Special Publications.

[16]  Joohan Lee,et al.  Seismic and radar investigations of Fourcade Glacier on King George Island, Antarctica , 2010 .

[17]  D. Hicks,et al.  Beach Volume on an Eroding Sand–Gravel Coast Determined Using Ground Penetrating Radar , 2009 .

[18]  J. Degenhardt,et al.  Development of tongue-shaped and multilobate rock glaciers in alpine environments – Interpretations from ground penetrating radar surveys , 2009 .

[19]  Charles S Bristow Facies analysis in the Lower Greensand using ground-penetrating radar , 1995, Journal of the Geological Society.

[20]  N. Lancaster,et al.  The sedimentary structure of linear sand dunes , 2000, Nature.

[21]  G. Brierley,et al.  Ground‐penetrating radar and sedimentological analysis of Holocene floodplains: Insight from the Tuross valley, New South Wales , 2001 .

[22]  J. Clague,et al.  Architecture and evolution of a fjord‐head delta, western Vancouver Island, British Columbia , 2004 .

[23]  D. FitzGerald,et al.  Radar facies of paraglacial barrier systems: coastal New England, USA , 1998 .

[24]  Peter Huggenberger,et al.  Radar facies: recognition of facies patterns and heterogeneities within Pleistocene Rhine gravels, NE Switzerland , 1993, Geological Society, London, Special Publications.

[25]  P. Gibbard,et al.  Late Middle Pleistocene ice‐marginal sedimentation in East Anglia, England , 2012 .

[26]  Michael H. Powers,et al.  Modeling frequency-dependent GPR , 1997 .

[27]  E. Rhodes,et al.  Investigation of the age and migration of reversing dunes in Antarctica using GPR and OSL, with implications for GPR on Mars , 2010 .

[28]  J. Best,et al.  Three-Dimensional Sedimentary Architecture of a Large, Mid-Channel Sand Braid Bar, Jamuna River, Bangladesh , 2003 .

[29]  Gregory S. Baker,et al.  An introduction to ground penetrating radar (GPR) , 2007 .

[30]  A. Neal Ground-penetrating radar and its use in sedimentology: principles, problems and progress , 2004 .

[31]  M. Bateman,et al.  Coastal barrier dune construction during sea-level highstands in MIS 3 and 5a on Tottori coast-line, Japan , 2011 .

[32]  A. Murray,et al.  Morphology and sedimentary architecture of a beach‐ridge system (Anholt, the Kattegat sea): a record of punctuated coastal progradation and sea‐level change over the past ∼1000 years , 2012 .

[33]  Steven Koppenjan,et al.  Chapter 3 – Ground Penetrating Radar Systems and Design , 2009 .

[34]  J. Bridge,et al.  Ground penetrating radar: application to sandbody geometry and heterogeneity studies , 1993, Geological Society, London, Special Publications.

[35]  P. Putnam,et al.  Stratigraphic imaging of the Navajo Sandstone using ground-penetrating radar , 2003 .

[36]  R. Clayton,et al.  Sedimentary structure of large sand dunes: examples from Dumont and Eureka dunes, California , 2012 .

[37]  P. Vail,et al.  Seismic Stratigraphy and Global Changes of Sea Level: Part 5. Chronostratigraphic Significance of Seismic Reflections: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation , 1977 .

[38]  Johan Alexander Huisman,et al.  Iron oxides as a cause of GPR reflections , 2002 .

[39]  S. Lane,et al.  Evolution and sedimentology of a channel fill in the sandy braided South Saskatchewan River and its comparison to the deposits of an adjacent compound bar , 2011 .

[40]  K. Pedersen,et al.  Unveiling past aeolian landscapes: A ground-penetrating radar survey of a Holocene coastal dunefield system, Thy, Denmark , 2005 .

[41]  Nigel J. Cassidy,et al.  Chapter 2 – Electrical and Magnetic Properties of Rocks, Soils and Fluids , 2009 .

[42]  J. Bridge Chapter 11 – Advances in Fluvial Sedimentology using GPR , 2009 .

[43]  Remke L. Van Dam,et al.  Identifying causes of ground‐penetrating radar reflections using time‐domain reflectometry and sedimentological analyses , 2000 .

[44]  A. P. Annan,et al.  Impulse radar sounding in permafrost , 1976 .

[45]  Mark Grasmueck,et al.  3D GPR reveals complex internal structure of Pleistocene oolitic sandbar , 2002 .

[46]  Harry M. Jol,et al.  Ground penetrating radar : theory and applications , 2009 .

[47]  M. Brook,et al.  Structural glaciology of a temperate maritime glacier: lower fox glacier, new zealand , 2010 .

[48]  L. Slater,et al.  Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland , 2004 .

[49]  Harry M. Jol,et al.  Ground penetrating radar of northern lacustrine deltas , 1991 .

[50]  A. Awasthi,et al.  Remote sensing-GIS and GPR studies of two active faults, Western Gangetic Plains, India , 2007 .

[51]  George Robert Rapp,et al.  Geoarchaeology: The Earth-Science Approach to Archaeological Interpretation , 1998 .

[52]  Charles S Bristow,et al.  GPR studies in the piano di pezza area of the ovindoli-pezza fault, Central Apennines, Italy: Extending palacoselsmic trench investigations with high resolution GPR profiling , 2004, Proceedings of the Tenth International Conference on Grounds Penetrating Radar, 2004. GPR 2004..

[53]  N. Lancaster,et al.  Combining ground penetrating radar surveys and optical dating to determine dune migration in Namibia , 2005, Journal of the Geological Society.

[54]  R. V. Dam,et al.  Influence of Organic Matter in Soils on Radar-Wave Reflection: Sedimentological Implications , 2002 .

[55]  W. Barnhardt,et al.  Evolution of a Holocene delta driven by episodic sediment delivery and coseismic deformation, Puget Sound, Washington, USA , 2006 .

[56]  J. Cermak,et al.  Mapping tree root systems with ground-penetrating radar. , 1999, Tree physiology.

[57]  D. Pantosti,et al.  Paleoseismicity of the Ovindoli‐Pezza fault, central Apennines, Italy: A history including a large, previously unrecorded earthquake in the Middle Ages (860–1300 A.D.) , 1996 .

[58]  Brian J. Moorman,et al.  Imaging periglacial conditions with ground‐penetrating radar , 2003 .

[59]  M. Grosjean,et al.  Palaeogeography, Palaeoclimatology, Palaeoecology. Long-term multi-proxy climate reconstructions and dynamics in South America (LOTRED-SA): State of the art and perspectives , 2009 .

[60]  Joseph Holden,et al.  Application of ground‐penetrating radar to the identification of subsurface piping in blanket peat , 2002 .

[61]  Harry M. Jol,et al.  GPR in sediments: advice on data collection, basic processing and interpretation, a good practice guide , 2003, Geological Society, London, Special Publications.

[62]  I. Lunt,et al.  Evolution and deposits of a gravelly braid bar, Sagavanirktok River, Alaska , 2004 .

[63]  Ralf J. Weger,et al.  How Dense is Dense Enough For a real 3D GPR Survey , 2003 .

[64]  Edwin D. McKee,et al.  STRUCTURES OF DUNES AT WHITE SANDS NATIONAL MONUMENT, NEW MEXICO (AND A COMPARISON WITH STRUCTURES OF DUNES FROM OTHER SELECTED AREAS)1 , 1966 .

[65]  Georgios P. Tsoflias,et al.  Assessing fault displacement and off-fault deformation in an extensional tectonic setting using 3-D ground-penetrating radar imaging , 2009 .

[66]  Z. Harari Ground-penetrating radar (GPR) for imaging stratigraphic features and groundwater in sand dunes , 1996 .

[67]  E. I. Parkhomenko Electrical properties of rocks , 1967 .

[68]  K. Martinez,et al.  Temporal englacial water content variability associated with a rapidly retreating glacier , 2011 .

[69]  Nicholas Lancaster,et al.  Age and dynamics of linear dunes in the Namib Desert , 2007 .

[70]  Ralf J. Weger,et al.  Full-resolution 3D GPR imaging , 2005 .

[71]  A. Endres,et al.  Facies and ground‐penetrating radar characteristics of coarse‐grained beach deposits of the uppermost Pleistocene glacial Lake Algonquin, Ontario, Canada , 2009 .

[72]  L. Conyers Ground-Penetrating Radar for Archaeology , 2004 .

[73]  S. Evans,et al.  Radio Echo Sounding of Polar Ice Sheets , 1964, Nature.

[74]  M. Bennett,et al.  Internal structure of a barrier beach as revealed by ground penetrating radar (GPR): Chesil beach, UK , 2009 .

[75]  T. Feuillet,et al.  Structure and genesis of the Thabor rock glacier (Northern French Alps) determined from morphological and ground-penetrating radar surveys , 2011 .

[76]  Charlie S. Bristow,et al.  Ground penetrating radar in Aeolian Dune Sands , 2009 .

[77]  James S. Mellett,et al.  Ground penetrating radar applications in engineering, environmental management, and geology , 1995 .

[78]  K. Kjær,et al.  Formation of submarginal and proglacial end moraines: implications of ice‐flow mechanism during the 1963–64 surge of Brúarjökull, Iceland , 2009 .

[79]  Dan K. Thompson,et al.  Ecohydrologically important subsurface structures in peatlands revealed by ground‐penetrating radar and complex conductivity surveys , 2008 .

[80]  H. Tsoar Internal Structure and Surface Geometry of Longitudinal (Seif) Dunes , 1982 .

[81]  M. E. R. WALFORD,et al.  Radio Echo Sounding Through an Ice Shelf , 1964, Nature.

[82]  A. A. Shah,et al.  Paleoseismic evidence from trench investigation along Hajipur fault, Himalayan Frontal Thrust, NW Himalaya: implications of the faulting pattern on landscape evolution and seismic hazard , 2010 .

[83]  Charles S Bristow,et al.  Quantifying rates of coastal progradation from sediment volume using GPR and OSL: the Holocene fill of Guichen Bay, south‐east South Australia , 2006 .

[84]  M. Słowik Reconstructing migration phases of meandering channels by means of ground-penetrating radar (GPR): the case of the Obra River, Poland , 2011 .

[85]  H. Jol,et al.  Stratigraphic analyses using GPR , 2007 .

[86]  A. Jõeleht,et al.  Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia , 2011 .

[87]  Dante Fratta,et al.  Ground penetrating radar and spring formation in a groundwater dominated peat wetland , 2009 .

[88]  M. Church,et al.  Morphology and evolution of bars in a wandering gravel‐bed river; lower Fraser river, British Columbia, Canada , 2009 .

[89]  Charles S Bristow A new look at the Lower Greensand using ground-penetrating radar , 1994 .

[90]  L. Slater,et al.  Stratigraphic controls on pool formation in a domed bog inferred from ground penetrating radar (GPR) , 2005 .

[91]  A. P. Annan,et al.  GPR frequency selection , 1994 .

[92]  Charles S Bristow,et al.  Architecture of channel-belt deposits in an aggrading shallow sandbed braided river: the lower Niobrara River, northeast Nebraska , 2003 .

[93]  M. Hayashi,et al.  Internal structure and hydrological functions of an alpine proglacial moraine , 2011 .

[94]  Edwin Dinwiddie McKee,et al.  A study of global sand seas , 1979 .

[95]  Thomas Aigner,et al.  Sedimentary architecture and 3D ground‐penetrating radar analysis of gravelly meandering river deposits (Neckar Valley, SW Germany) , 2007 .

[96]  Harry M. Jol,et al.  Ground Penetrating Radar in Sediments , 2003 .

[97]  D. Dethier,et al.  Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA , 2011 .

[98]  Håkan Brunzell,et al.  Detection of shallowly buried objects using impulse radar , 1999, IEEE Trans. Geosci. Remote. Sens..

[99]  S. J. Schmidt,et al.  Gross Errors in Height Indication from Pulsed Radar Altimeters Operating over Thick Ice or Snow , 1962, Proceedings of the IRE.

[100]  W. Kean,et al.  Architecture and sedimentology of an active braid bar in the Wisconsin River based on 3-D ground penetrating radar , 2007 .

[101]  David J. Daniels,et al.  Introduction to subsurface radar , 1988 .

[102]  F. P. Haeni,et al.  Application of Ground‐Penetrating‐Radar Methods in Hydrogeologie Studies , 1991 .

[103]  Rexford M. Morey,et al.  Continuous Subsurface Profiling by Impulse Radar , 1974 .

[104]  L. Slater,et al.  Pool patterning in a northern peatland: Geophysical evidence for the role of postglacial landforms , 2011 .

[105]  F. S. A. Walter,et al.  Seasonal changes in ground‐penetrating radar signature observed at a polythermal glacier, Bylot Island, Canada , 2006 .

[106]  R. A. Overmeeren,et al.  Radar facies of unconsolidated sediments in The Netherlands: A radar stratigraphy interpretation method for hydrogeology , 1998 .

[107]  I. Lunt,et al.  A quantitative, three‐dimensional depositional model of gravelly braided rivers , 2004 .