(β ,α)−Connectivity Index of Graphs

Abstract Let Eβ (G) be the set of paths of length β in a graph G. For an integer β ≥ 1 and a real number α, the (β,α)-connectivity index is defined as χαβ(G)=Σv1,v2⋅⋅⋅vβ+1∈Eβ(G)(dG(v1)dG(v2)...dG(vβ+1))α. $$\begin{array}{} \displaystyle ^\beta\chi_\alpha(G)=\sum \limits_{v_1v_2 \cdot \cdot \cdot v_{\beta+1}\in E_\beta(G)}(d_{G}(v_1)d_{G}(v_2)...d_{G}(v_{\beta+1}))^{\alpha}. \end{array}$$ The (2,1)-connectivity index shows good correlation with acentric factor of an octane isomers. In this paper, we compute the (2, α)-connectivity index of certain class of graphs, present the upper and lower bounds for (2, α)-connectivity index in terms of number of vertices, number of edges and minimum vertex degree and determine the extremal graphs which achieve the bounds. Further, we compute the (2, α)-connectivity index of line graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of TUC4C8[p,q], tadpole graphs, wheel graphs and ladder graphs.

[1]  Juan Rada,et al.  Higher order connectivity index of starlike trees , 2002, Discret. Appl. Math..

[2]  Milan Randic Representation of molecular graphs by basic graphs , 1992, J. Chem. Inf. Comput. Sci..

[3]  Hao Li,et al.  The m-connectivity index of graphs ∗ , 2005 .

[4]  Mirko Lepovic,et al.  Choosing the exponent in the definition of the connectivity index , 2001 .

[5]  Peter E. John,et al.  Wiener index of armchair polyhex nanotubes , 2004 .

[6]  M. Diudea HOSOYA POLYNOMIAL IN TORI , 2002 .

[7]  Sohail Zafar,et al.  On topological properties of the line graphs of subdivision graphs of certain nanostructures , 2016, Appl. Math. Comput..

[8]  J. A. Peña,et al.  The connectivity index of a weighted graph , 1998 .

[9]  Lan Xu,et al.  Topological indices of the line graph of subdivision graphs and their Schur-bounds , 2015, Appl. Math. Comput..

[10]  V. Tewari,et al.  Calculation of heat of formation :- Molecular connectivity and IOC-ω technique, a comparative study , 1984 .

[11]  L B Kier,et al.  Molecular connectivity V: connectivity series concept applied to density. , 1976, Journal of pharmaceutical sciences.

[12]  M. Randic Characterization of molecular branching , 1975 .

[13]  Edward C. Kirby,et al.  THE ENERGETIC STABILITY OF TORI AND SINGLE-WALL TUBES , 2001 .

[14]  Ismail Naci Cangül,et al.  On the Zagreb indices of the line graphs of the subdivision graphs , 2011, Appl. Math. Comput..

[15]  M. Gribaudo,et al.  2002 , 2001, Cell and Tissue Research.

[16]  Dominique de Caen,et al.  An upper bound on the sum of squares of degrees in a graph , 1998, Discret. Math..

[17]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[18]  Ali Reza Ashrafi,et al.  Computing the Wiener Index of a TUC4C8(S) Nanotorus , 2007 .

[19]  Ante Graovac,et al.  On Vertex–Degree–Based Molecular Structure Descriptors , 2011 .