Solving Large 0–1 Multidimensional Knapsack Problems by a New Simplified Binary Artificial Fish Swarm Algorithm

The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0–1 multidimensional knapsack problems that are NP-hard. In the last decades, several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simplified binary version of the artificial fish swarm algorithm is presented, where a point/fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fish behavior that are randomly selected by using two user defined probability values. In order to make the points feasible, the presented algorithm uses a random heuristic drop-item procedure followed by an add-item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50 % of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.

[1]  M. Fernanda P. Costa,et al.  An artificial fish swarm algorithm based hyperbolic augmented Lagrangian method , 2014, J. Comput. Appl. Math..

[2]  Raymond R. Hill,et al.  Problem reduction heuristic for the 0-1 multidimensional knapsack problem , 2012, Comput. Oper. Res..

[3]  Min Huang,et al.  An Artificial Fish Swarm Algorithm Based and ABC Supported QoS Unicast Routing Scheme in NGI , 2006, ISPA Workshops.

[4]  A. Victor Cabot,et al.  An Enumeration Algorithm for Knapsack Problems , 1970, Oper. Res..

[5]  David Pisinger,et al.  Algorithms for Knapsack Problems , 1995 .

[6]  Sameh Al-Shihabi,et al.  A hybrid of Nested Partition, Binary Ant System, and Linear Programming for the multidimensional knapsack problem , 2010, Comput. Oper. Res..

[7]  Ana Maria A. C. Rocha,et al.  Novel Fish Swarm Heuristics for Bound Constrained Global Optimization Problems , 2011, ICCSA.

[8]  Ana Maria A. C. Rocha,et al.  An augmented Lagrangian fish swarm based method for global optimization , 2011, J. Comput. Appl. Math..

[9]  Zuren Feng,et al.  An ant colony optimization approach for the multidimensional knapsack problem , 2010, J. Heuristics.

[10]  S. Martello,et al.  Algorithms for Knapsack Problems , 1987 .

[11]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[12]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[13]  Hasan Pirkul,et al.  A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .

[14]  Ana Maria A. C. Rocha,et al.  A simplified binary artificial fish swarm algorithm for 0-1 quadratic knapsack problems , 2014, J. Comput. Appl. Math..

[15]  Luca Maria Gambardella,et al.  Maximum satisfiability: How good are tabu search and plateau moves in the worst-case? , 2005, Eur. J. Oper. Res..

[16]  A. L. Soyster,et al.  Zero-one programming with many variables and few constraints , 1978 .

[17]  Andreas Drexl,et al.  A simulated annealing approach to the multiconstraint zero-one knapsack problem , 1988, Computing.

[18]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[19]  Michel Vasquez,et al.  Improved results on the 0-1 multidimensional knapsack problem , 2005, Eur. J. Oper. Res..

[20]  H. Martin Weingartner,et al.  Method for the Solution of the Multi-Dimensional 0/1 Knapsack Problem , 2015 .

[21]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..

[22]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[23]  Didier El Baz,et al.  Heuristics for the 0-1 multidimensional knapsack problem , 2009, Eur. J. Oper. Res..

[24]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[25]  Susan H. Xu,et al.  Greedy algorithm for the general multidimensional knapsack problem , 2007, Ann. Oper. Res..

[26]  Xiaodong Li,et al.  A new discrete electromagnetism-based meta-heuristic for solving the multidimensional knapsack problem using genetic operators , 2012, Oper. Res..

[27]  Ana Maria A. C. Rocha,et al.  Solving Multidimensional 0-1 Knapsack Problem with an Artificial Fish Swarm Algorithm , 2012, ICCSA.

[28]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[29]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[30]  Masatoshi Sakawa,et al.  Genetic algorithms with double strings for 0-1 programming problems , 2003, Eur. J. Oper. Res..

[31]  Rumen Andonov,et al.  A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem , 2008, Eur. J. Oper. Res..

[32]  Kenneth Schilling The growth of m-constraint random knapsacks , 1990 .

[33]  Kusum Deep,et al.  A Modified Binary Particle Swarm Optimization for Knapsack Problems , 2012, Appl. Math. Comput..

[34]  Yong Wang,et al.  Optimal Multiuser Detection with Artificial Fish Swarm Algorithm , 2007, ICIC.

[35]  Adel Nadjaran Toosi,et al.  Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications , 2012, Artificial Intelligence Review.

[36]  H. Martin Weingartner,et al.  Methods for the Solution of the Multidimensional 0/1 Knapsack Problem , 1967, Operational Research.

[37]  Andries Petrus Engelbrecht,et al.  Set-based particle swarm optimization applied to the multidimensional knapsack problem , 2012, Swarm Intelligence.

[38]  Jian-Wei Ma,et al.  An improved artificial fish-swarm algorithm and its application in feed-forward neural networks , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[39]  Clifford C. Petersen,et al.  Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R&D Projects , 1967 .

[40]  Arnaud Fréville,et al.  The 0-1 bidimensional knapsack problem: Toward an efficient high-level primitive tool , 1996, J. Heuristics.

[41]  Nikos E. Mastorakis,et al.  Image Segmentation with Improved Artificial Fish Swarm Algorithm , 2009 .

[42]  José F. Fontanari,et al.  A statistical analysis of the knapsack problem , 1995 .

[43]  F. Djannaty,et al.  A Hybrid Genetic Algorithm for the Multidimensional Knapsack Problem , 2008 .