Pricing early-exercise and discrete barrier options by fourier-cosine series expansions

We present a pricing method based on Fourier-cosine expansions for early-exercise and discretely-monitored barrier options. The method works well for exponential Lévy asset price models. The error convergence is exponential for processes characterized by very smooth ($${{\rm{C}}^{\infty}[a,b]\in\mathbb {R}}$$) transitional probability density functions. The computational complexity is O((M − 1)N log N) with N a (small) number of terms from the series expansion, and M, the number of early-exercise/monitoring dates. This paper is the follow-up of (Fang and Oosterlee in SIAM J Sci Comput 31(2):826–848, 2008) in which we presented the impressive performance of the Fourier-cosine series method for European options.

[1]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[2]  Vladimir Surkov Parallel option pricing with Fourier Space Time-stepping method on Graphics Processing Units , 2008, IPDPS.

[3]  K. Singleton,et al.  PRICING COUPON‐BOND OPTIONS AND SWAPTIONS IN AFFINE TERM STRUCTURE MODELS , 2002 .

[4]  Conall O'Sullivan Path Dependant Option Pricing Under Levy Processes , 2005 .

[5]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[6]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[7]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[8]  Ken-iti Sato Basic Results on Lévy Processes , 2001 .

[9]  M. Dempster,et al.  Spread Option Valuation and the Fast Fourier Transform , 2002 .

[10]  Kyriakos Chourdakis Option Pricing Using the Fractional FFT , 2004 .

[11]  S. Howison,et al.  A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 1: Barrier Options , 2007 .

[12]  A. Eydeland A fast algorithm for computing integrals in function spaces: Financial applications , 1994 .

[13]  Richard C. Stapleton,et al.  Richardson Extrapolation Techniques for the Pricing of American-Style Options , 2002 .

[14]  Mark Broadie,et al.  Application of the Fast Gauss Transform to Option Pricing , 2003, Manag. Sci..

[15]  Sam Howison A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 2: Bermudan Options , 2007 .

[16]  J. Boyd Chebyshev & Fourier Spectral Methods , 1989 .

[17]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[18]  J. R. Webster,et al.  A comparison of some methods for the evaluation of highly oscillatory integrals , 1999 .

[19]  Iris R. Wang,et al.  Robust numerical valuation of European and American options under the CGMY process , 2007 .

[20]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[21]  P. Duck,et al.  Universal option valuation using quadrature methods , 2003 .

[22]  R. Piessens,et al.  A numerical method for the integration of oscillatory functions , 1971 .

[23]  P. Duck,et al.  Extending quadrature methods to value multi-asset and complex path dependent options , 2007, Journal of Financial Economics.

[24]  S. Jaimungal,et al.  Option pricing with regime switching Lévy processes using Fourier space time stepping , 2007 .

[25]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[26]  P. Wilmott Derivatives: The Theory and Practice of Financial Engineering , 1998 .

[27]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[28]  Liming Feng,et al.  PRICING DISCRETELY MONITORED BARRIER OPTIONS AND DEFAULTABLE BONDS IN LÉVY PROCESS MODELS: A FAST HILBERT TRANSFORM APPROACH , 2008 .

[29]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[30]  C. Oosterlee,et al.  On American Options Under the Variance Gamma Process , 2007 .

[31]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[32]  Wim Schoutens,et al.  Pricing Credit Default Swaps Under Levy Models , 2007 .

[33]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[34]  Cornelis W. Oosterlee,et al.  Accurate Evaluation of European and American Options Under the CGMY Process , 2007, SIAM J. Sci. Comput..

[35]  E. Haug The complete guide to option pricing formulas , 1997 .

[36]  Vladimir Surkov Parallel option pricing with Fourier Space Time-stepping method on Graphics Processing Units , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[37]  D. Madan,et al.  Pricing American options under variance gamma , 2003 .

[38]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[39]  R. Lord,et al.  A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options Under Levy Processes , 2007 .

[40]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[41]  Espen Gaarder Haug Barrier Put-Call Transformations , 1999 .

[42]  張傳章 使用Richardson外插法評價美式選權之全面性研究; A Comprehensive Study on Using the Richardson Extrapolation Technique for Pricing American-Style Options , 2010 .

[43]  Cornelis W. Oosterlee,et al.  A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..

[44]  Y. Yamamoto,et al.  A Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options , 2005, Oper. Res..

[45]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[46]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[47]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .