Force-gradient nested multirate methods for Hamiltonian systems
暂无分享,去创建一个
[1] M. A. Clark,et al. Speeding up HMC with better integrators , 2007, 0710.3611.
[2] M. A. Clark,et al. Tuning HMC using Poisson Brackets , 2008 .
[3] Scott S. Hampton,et al. A separable shadow Hamiltonian hybrid Monte Carlo method. , 2009, The Journal of chemical physics.
[4] Matthias Ehrhardt,et al. Multistep Methods for Lattice QCD Simulations , 2011 .
[5] A. Kennedy,et al. Better HMC integrators for dynamical simulations , 2010, 1011.0230.
[6] Robert D. Skeel,et al. Practical Construction of Modified Hamiltonians , 2001, SIAM J. Sci. Comput..
[7] Sinéad M. Ryan,et al. Practical all-to-all propagators for lattice QCD , 2005, Comput. Phys. Commun..
[8] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[9] Michael Günther,et al. Symmetric Partitioned Runge-Kutta Methods for Differential Equations on Lie-Groups , 2011 .
[10] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[11] D. Shalloway,et al. Shadow mass and the relationship between velocity and momentum in symplectic numerical integration. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[12] M. A. Clark,et al. Force-gradient integrators , 2009, 0910.2950.
[13] M. A. Clark,et al. Shadow Hamiltonians, Poisson brackets, and gauge theories , 2013 .
[14] I. Omelyan,et al. Advanced gradient-like methods for rigid-body molecular dynamics. , 2007, The Journal of chemical physics.
[15] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[16] Igor P. Omelyan,et al. Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations , 2003 .
[17] Robert D. Skeel,et al. Monitoring energy drift with shadow Hamiltonians , 2005 .