Force-gradient nested multirate methods for Hamiltonian systems

Force-gradient decomposition methods are used to improve the energy preservation of symplectic schemes applied to Hamiltonian systems. If the potential is composed of different parts with strongly varying dynamics, this multirate potential can be exploited by coupling force-gradient decomposition methods with splitting techniques for multi-time scale problems to further increase the accuracy of the scheme and reduce the computational costs. In this paper, we derive novel force-gradient nested methods and test them numerically. We apply them on the three-body problem, modified for a better observation of the advantageous properties, needed for the future research.

[1]  M. A. Clark,et al.  Speeding up HMC with better integrators , 2007, 0710.3611.

[2]  M. A. Clark,et al.  Tuning HMC using Poisson Brackets , 2008 .

[3]  Scott S. Hampton,et al.  A separable shadow Hamiltonian hybrid Monte Carlo method. , 2009, The Journal of chemical physics.

[4]  Matthias Ehrhardt,et al.  Multistep Methods for Lattice QCD Simulations , 2011 .

[5]  A. Kennedy,et al.  Better HMC integrators for dynamical simulations , 2010, 1011.0230.

[6]  Robert D. Skeel,et al.  Practical Construction of Modified Hamiltonians , 2001, SIAM J. Sci. Comput..

[7]  Sinéad M. Ryan,et al.  Practical all-to-all propagators for lattice QCD , 2005, Comput. Phys. Commun..

[8]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[9]  Michael Günther,et al.  Symmetric Partitioned Runge-Kutta Methods for Differential Equations on Lie-Groups , 2011 .

[10]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[11]  D. Shalloway,et al.  Shadow mass and the relationship between velocity and momentum in symplectic numerical integration. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  M. A. Clark,et al.  Force-gradient integrators , 2009, 0910.2950.

[13]  M. A. Clark,et al.  Shadow Hamiltonians, Poisson brackets, and gauge theories , 2013 .

[14]  I. Omelyan,et al.  Advanced gradient-like methods for rigid-body molecular dynamics. , 2007, The Journal of chemical physics.

[15]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[16]  Igor P. Omelyan,et al.  Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations , 2003 .

[17]  Robert D. Skeel,et al.  Monitoring energy drift with shadow Hamiltonians , 2005 .