Image restoration and simultaneous edge detection by optimal control methods

The present paper is concerned with the numerical solution of multidimensional control problems of Dieudonné-Rashevsky type by discretization methods and large-scale optimization techniques. We prove first a convergence theorem wherein the difference of the minimal value and the objective values along a minimizing sequence is estimated by the mesh size of the underlying triangulations. Then we apply the proposed method to the problem of the simultaneous restoration of noisy image data and edge detection therein. Instead of using an Ambrosio-Tortorelli type energy functional, we reformulate the image restoration problem as a multidimensional control problem. The edge detector can be immediately built from the control variables. The quality of our numerical results competes well with the results given by variational techniques.

[1]  Vladimir M. Veliov,et al.  Optimality conditions for age-structured control systems☆ , 2003 .

[2]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[3]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[4]  J. Clément,et al.  IMAGE SEGMENTATION WITH A FINITE ELEMENT METHOD , 1999 .

[5]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[6]  Günter Deweß,et al.  Einschätzen und Optimieren von Verkehrsflüssen , 1995 .

[7]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[8]  M. Wagner,et al.  Pontryagin’s Maximum Principle for Multidimensional Control Problems in Image Processing , 2009 .

[9]  H. Gajewski,et al.  Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen , 1974 .

[10]  M Brokate,et al.  Pontryagin's principle for control problems in age-dependent population dynamics , 1985, Journal of mathematical biology.

[11]  Tsuan Wu Ting,et al.  Elastic-plastic torsion problem III , 1967 .

[12]  Eldad Haber,et al.  Intensity Gradient Based Registration and Fusion of Multi-modal Images , 2006, MICCAI.

[13]  WächterAndreas,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006 .

[14]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[15]  Yann Gousseau,et al.  Are Natural Images of Bounded Variation? , 2001, SIAM J. Math. Anal..

[16]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[17]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[18]  Otmar Scherzer,et al.  Tube Methods for BV Regularization , 2003, Journal of Mathematical Imaging and Vision.

[19]  Paolo Marcellini,et al.  Cauchy-Dirichlet problem for first order nonlinear systems. (Sur le problème de Cauchy-Dirichlet pour les systèmes d' équationsnon linéaires du premier ordre.) , 1998 .

[20]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[21]  G. Bellettini,et al.  Discrete approximation of a free discontinuity problem , 1994 .

[22]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[23]  P. Funk,et al.  Variationsrechnung und ihre Anwendung in Physik und Technik , 1962 .

[24]  B. Dacorogna,et al.  Implicit partial differential equations , 1999 .

[25]  J. A. Andrejewa,et al.  Zur analytischen Lösung geometrischer Optimierungsaufgaben mittels Dualität bei Steuerungsproblemen. Teil I , 1984 .

[26]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[27]  T. Ting Elastic-Plastic Torsion of Convex Cylindrical Bars , 1969 .

[28]  L. Evans Measure theory and fine properties of functions , 1992 .

[29]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[30]  B. Dacorogna,et al.  General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases , 1997 .

[31]  A. Chambolle,et al.  Inverse problems in image processing and image segmentation : some mathematical and numerical aspects , 2000 .