The use of fractional derivatives to expand analytical functions in terms of quadratic functions with applications to special functions
暂无分享,去创建一个
[1] Thomas J. Osler,et al. The Integral Analog of the Leibniz Rule , 1972 .
[2] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[3] Arthur Erdélyi. Axially Symmetric Potentials and Fractional Integration , 1965 .
[4] Leonard Carlitz. Some generating functions for Laguerre polynomials , 1968 .
[5] Thomas J. Osler,et al. A Further Extension of the Leibniz Rule to Fractional Derivatives and Its Relation to Parseval’s Formula , 1972 .
[6] Theodore P. Higgins. A Hypergeometric Function Transform , 1964 .
[7] A. Erdélyi,et al. SOME APPLICATIONS OF FRACTIONAL INTEGRATION , 1963 .
[8] L. Pochhammer,et al. Ueber ein Integral mit doppeltem Umlauf , 1890 .
[9] M. Riesz. L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .
[10] H. M. Srivastava,et al. A Class of Addition Theorems† , 1983, Canadian Mathematical Bulletin.
[11] L. M. B. C. Campos,et al. On a Concept of Derivative of Complex Order with Applications to Special Functions , 1984 .
[12] Thomas J. Osler,et al. An integral analogue of Taylor’s series and its use in computing Fourier transforms , 1972 .
[13] Thomas J. Osler,et al. Fractional Derivatives and Special Functions , 1976 .
[14] Thomas J. Osler,et al. Fundamental properties of fractional derivatives via pochhammer integrals , 1975 .
[15] B. Ross,et al. Fractional Calculus and Its Applications , 1975 .
[16] L. Pochhammer. Ueber eine Classe von Integralen mit geschlossener Integrationscurve , 1890 .
[17] Thomas J. Osler,et al. Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .
[18] Paul L. Butzer,et al. An access to fractional differentiation via fractional difference quotients , 1975 .
[19] T. Osler. Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .
[20] Yoshikutsu Watanabe. Zum Riemannschen Binomischen Lehrsatz , 1932 .
[21] A. Erdélyi,et al. Tables of integral transforms , 1955 .
[22] W. N. Bailey. SERIES OF HYPERGEOMETRIC TYPE WHICH ARE INFINITE IN BOTH DIRECTIONS , 1936 .
[23] Hari M. Srivastava,et al. The rodrigues type representations for a certain class of special functions , 1979 .
[24] R. Tremblay,et al. Expansions of Operators Related to $xD$ and the Fractional Derivative , 1984 .
[25] Adam C. McBride,et al. Fractional Powers of a Class of Ordinary Differentilal Operators , 1982 .
[26] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[27] W. Rheinboldt,et al. Generalized hypergeometric functions , 1968 .
[28] Henry E. Fettis,et al. Erratum: Tables of integral transforms. Vol. I, II (McGraw-Hill, New York, 1954) by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi , 1973 .
[29] L. M. B. C. Campos,et al. On generalizations of the series of Taylor, Lagrange, Laurent and Teixeira , 1990 .
[30] J. H. Barrett,et al. Differential Equations of Non-Integer Order , 1954, Canadian Journal of Mathematics.
[31] Thomas J. Osler,et al. Fractional Derivatives and Leibniz Rule , 1971 .
[32] Francesco Mainardi,et al. Fractional relaxation in anelastic solids , 1994 .
[33] A. Erdélyi,et al. An Integral Equation Involving Legendre Functions , 1964 .
[34] R. Gorenflo,et al. Abel Integral Equations: Analysis and Applications , 1991 .
[35] H. Kober. ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .
[36] L. M. B. C. Campos,et al. On a generalized Mittag-Leffler theorem and implicit differintegration , 1989 .
[37] A. Erdélyi,et al. ON FRACTIONAL INTEGRATION AND ITS APPLICATION TO THE THEORY OF HANKEL TRANSFORMS , 1940 .
[38] L. M. B. C. Campos,et al. On a Systematic Approach to some Properties of Special Functions , 1986 .
[39] Thomas J. Osler,et al. The Fractional Derivative of a Composite Function , 1970 .
[40] Hari M. Srivastava,et al. New generating functions for Jacobi and related polynomials , 1973 .
[41] L. Pochhammer,et al. Zur Theorie der Euler'schen Integrale , 1890 .
[42] Richard Tremblay. Some Operational Formulas Involving the Operators $xD$, $x\Delta $ and Fractional Derivatives , 1979 .
[43] C. W. Clenshaw,et al. The special functions and their approximations , 1972 .
[44] G. H. Hardy,et al. Riemann's Form of Taylor's Series , 1945 .
[45] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .