The use of fractional derivatives to expand analytical functions in terms of quadratic functions with applications to special functions

Abstract In 1971, T.J. Osler propose a generalization of Taylor’s series of f ( z ) in which the general term is [ D z 0 - b an + γ f ( z 0 ) ] ( z - z 0 ) an + γ / Γ ( an + γ + 1 ) , where 0  a  ⩽ 1, b  ≠  z 0 and γ is an arbitrary complex number and D z α is the fractional derivative of order α . In this paper, we present a new expansion of an analytic function f ( z ) in R in terms of a power series θ ( t ) =  tq ( t ), where q ( t ) is any regular function and t is equal to the quadratic function [( z  −  z 1 )( z  −  z 2 )] , z 1  ≠  z 2 , where z 1 and z 2 are two points in R and the region of validity of this formula is also deduced. To illustrate the concept, if q ( t ) = 1, the coefficient of ( z  −  z 1 ) n ( z  −  z 2 ) n in the power series of the function ( z  −  z 1 ) α ( z  −  z 2 ) β f ( z ) is D z 1 - z 2 - α + n [ f ( z 1 ) ( z 1 - z 2 ) β - n - 1 ( z 1 - z 2 + z - w ) ] | w = z 1 / Γ ( 1 - α + n ) where α and β are arbitrary complex numbers. Many special forms are examined and some new identities involving special functions and integrals are obtained.

[1]  Thomas J. Osler,et al.  The Integral Analog of the Leibniz Rule , 1972 .

[2]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[3]  Arthur Erdélyi Axially Symmetric Potentials and Fractional Integration , 1965 .

[4]  Leonard Carlitz Some generating functions for Laguerre polynomials , 1968 .

[5]  Thomas J. Osler,et al.  A Further Extension of the Leibniz Rule to Fractional Derivatives and Its Relation to Parseval’s Formula , 1972 .

[6]  Theodore P. Higgins A Hypergeometric Function Transform , 1964 .

[7]  A. Erdélyi,et al.  SOME APPLICATIONS OF FRACTIONAL INTEGRATION , 1963 .

[8]  L. Pochhammer,et al.  Ueber ein Integral mit doppeltem Umlauf , 1890 .

[9]  M. Riesz L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .

[10]  H. M. Srivastava,et al.  A Class of Addition Theorems† , 1983, Canadian Mathematical Bulletin.

[11]  L. M. B. C. Campos,et al.  On a Concept of Derivative of Complex Order with Applications to Special Functions , 1984 .

[12]  Thomas J. Osler,et al.  An integral analogue of Taylor’s series and its use in computing Fourier transforms , 1972 .

[13]  Thomas J. Osler,et al.  Fractional Derivatives and Special Functions , 1976 .

[14]  Thomas J. Osler,et al.  Fundamental properties of fractional derivatives via pochhammer integrals , 1975 .

[15]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[16]  L. Pochhammer Ueber eine Classe von Integralen mit geschlossener Integrationscurve , 1890 .

[17]  Thomas J. Osler,et al.  Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .

[18]  Paul L. Butzer,et al.  An access to fractional differentiation via fractional difference quotients , 1975 .

[19]  T. Osler Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .

[20]  Yoshikutsu Watanabe Zum Riemannschen Binomischen Lehrsatz , 1932 .

[21]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[22]  W. N. Bailey SERIES OF HYPERGEOMETRIC TYPE WHICH ARE INFINITE IN BOTH DIRECTIONS , 1936 .

[23]  Hari M. Srivastava,et al.  The rodrigues type representations for a certain class of special functions , 1979 .

[24]  R. Tremblay,et al.  Expansions of Operators Related to $xD$ and the Fractional Derivative , 1984 .

[25]  Adam C. McBride,et al.  Fractional Powers of a Class of Ordinary Differentilal Operators , 1982 .

[26]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[27]  W. Rheinboldt,et al.  Generalized hypergeometric functions , 1968 .

[28]  Henry E. Fettis,et al.  Erratum: Tables of integral transforms. Vol. I, II (McGraw-Hill, New York, 1954) by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi , 1973 .

[29]  L. M. B. C. Campos,et al.  On generalizations of the series of Taylor, Lagrange, Laurent and Teixeira , 1990 .

[30]  J. H. Barrett,et al.  Differential Equations of Non-Integer Order , 1954, Canadian Journal of Mathematics.

[31]  Thomas J. Osler,et al.  Fractional Derivatives and Leibniz Rule , 1971 .

[32]  Francesco Mainardi,et al.  Fractional relaxation in anelastic solids , 1994 .

[33]  A. Erdélyi,et al.  An Integral Equation Involving Legendre Functions , 1964 .

[34]  R. Gorenflo,et al.  Abel Integral Equations: Analysis and Applications , 1991 .

[35]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[36]  L. M. B. C. Campos,et al.  On a generalized Mittag-Leffler theorem and implicit differintegration , 1989 .

[37]  A. Erdélyi,et al.  ON FRACTIONAL INTEGRATION AND ITS APPLICATION TO THE THEORY OF HANKEL TRANSFORMS , 1940 .

[38]  L. M. B. C. Campos,et al.  On a Systematic Approach to some Properties of Special Functions , 1986 .

[39]  Thomas J. Osler,et al.  The Fractional Derivative of a Composite Function , 1970 .

[40]  Hari M. Srivastava,et al.  New generating functions for Jacobi and related polynomials , 1973 .

[41]  L. Pochhammer,et al.  Zur Theorie der Euler'schen Integrale , 1890 .

[42]  Richard Tremblay Some Operational Formulas Involving the Operators $xD$, $x\Delta $ and Fractional Derivatives , 1979 .

[43]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[44]  G. H. Hardy,et al.  Riemann's Form of Taylor's Series , 1945 .

[45]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .