Binary junctions enhance electron storage and potential difference for photo-assisted electrocatalytic CO2 reduction to HCOOH

[1]  Lichun Liu,et al.  Visible-Light-Enhanced Hydrogen Evolution through Anodic Furfural Electro-Oxidation Using Nickel Atomically Dispersed Copper Nanoparticles. , 2023, Inorganic chemistry.

[2]  O. Ishitani,et al.  A Molecular Z-Scheme Artificial Photosynthetic System Under the Bias-Free Condition for CO₂ Reduction Coupled with Water Oxidation: Photocatalytic Production of CO/HCOOH and H₂O₂. , 2023, Angewandte Chemie.

[3]  B. Cheng,et al.  Single-atom Cu anchored on N-doped graphene/carbon nitride heterojunction for enhanced photocatalytic H2O2 production , 2023, Journal of Materials Science & Technology.

[4]  M. Xing,et al.  Investigation of Concerted Proton–Electron Donors for Promoting the Selective Production of HCOOH in CO2 Photoreduction , 2023, ACS Catalysis.

[5]  Dieqing Zhang,et al.  Activation of chloride by oxygen vacancies-enriched TiO2 photoanode for efficient photoelectrochemical treatment of persistent organic pollutants and simultaneous H2 generation. , 2023, Journal of hazardous materials.

[6]  Qi Shen,et al.  Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide , 2022, Advanced science.

[7]  P. Liu,et al.  In situ Sr2+ ion diffusion synthesis SrTiO3-δ quantum dots on TiO2-δ nanorods with efficient interfacial electron transfer for deeply NO oxidation removal , 2022, Materials Today Physics.

[8]  Ting Ouyang,et al.  1D α-Fe2O3/ZnO Junction Arrays Modified by Bi as Photocathode: High Efficiency in Photoelectrochemical Reduction of CO2 to HCOOH. , 2022, The journal of physical chemistry letters.

[9]  S. Liu,et al.  Powering the World with Solar Fuels from Photoelectrochemical CO2 Reduction: Basic Principles and Recent Advances , 2022, Advanced Energy Materials.

[10]  R. Yu,et al.  Semicrystalline SrTiO3‐Decorated Anatase TiO2 Nanopie as Heterostructure for Efficient Photocatalytic Hydrogen Evolution , 2022, Small methods.

[11]  Zhenhua Li,et al.  Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO2 photoanode , 2021, Nature Communications.

[12]  X. Tan,et al.  Effect of S vacancy in Cu3SnS4 on high selectivity and activity of photocatalytic CO2 reduction , 2021 .

[13]  Hexing Li,et al.  Photoelectrocatalytic Reduction of CO2 to Syngas via SnOx‐Enhanced Cu2O Nanowires Photocathodes , 2021, Advanced Functional Materials.

[14]  J. Fujisawa,et al.  Interfacial Charge-Transfer Transitions between TiO2 Nanoparticles and Benzoic Acid Derivatives , 2021, The Journal of Physical Chemistry C.

[15]  Xiaomei Wang,et al.  Highly Efficient Degradation of Persistent Pollutants with 3D Nanocone TiO2-Based Photoelectrocatalysis. , 2021, Journal of the American Chemical Society.

[16]  R. Che,et al.  Multi-Path Electron Transfer in 1D Double-Shelled Sn@Mo2 C/C Tubes with Enhanced Dielectric Loss for Boosting Microwave Absorption Performance. , 2021, Small.

[17]  Junming Li,et al.  Orientational Alignment of Oxygen Vacancies: Electric-Field-Inducing Conductive Channels in TiO2 Film to Boost Photocatalytic Conversion of CO2 into CO. , 2021, Nano letters.

[18]  H. Zeng,et al.  Single-Layer MoS2 Grown on Atomically Flat SrTiO3 Single Crystal for Enhanced Trionic Luminescence. , 2021, ACS nano.

[19]  Wei Guo,et al.  Vertical 3D Printed Forest‐Inspired Hierarchical Plasmonic Superstructure for Photocatalysis , 2021, Advanced Functional Materials.

[20]  Wenchang Wang,et al.  A Three-Dimensional Branched TiO2 Photoanode with an Ultrathin Al2O3 Passivation Layer and a NiOOH Cocatalyst toward Photoelectrochemical Water Oxidation. , 2021, ACS applied materials & interfaces.

[21]  Jun Cheng,et al.  Origin of the Adsorption-State-Dependent Photoactivity of Methanol on TiO2(110) , 2021 .

[22]  Paul N. Duchesne,et al.  Enhanced CO2 Photocatalysis by Indium Oxide Hydroxide Supported on TiN@TiO2 Nanotubes. , 2021, Nano letters.

[23]  Zhiqun Lin,et al.  Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting , 2020 .

[24]  Jingsan Xu,et al.  Interpreting the enhanced photoactivities of 0D/1D heterojunctions of CdS quantum dots /TiO2 nanotube arrays using femtosecond transient absorption spectroscopy , 2020 .

[25]  Jiaguo Yu,et al.  Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction , 2020, Nature Communications.

[26]  O. Terasaki,et al.  Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction , 2020, Nature.

[27]  Zhiming M. Wang,et al.  Boosting the performance of eco-friendly quantum dots-based photoelectrochemical cells via effective surface passivation , 2020 .

[28]  Yifei Li,et al.  Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O , 2020 .

[29]  Guozhen Zhang,et al.  Tracking Mechanistic Pathway of Photocatalytic CO2 Reaction at Ni Sites Using Operando, Time-Resolved Spectroscopy. , 2020, Journal of the American Chemical Society.

[30]  Xiaoliang Xu,et al.  Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers , 2019, Nature Energy.

[31]  Z. Mi,et al.  Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction , 2019, Nature Energy.

[32]  Ting Zhu,et al.  Oxygen Vacancies in Amorphous InOx Nanoribbons Enhance CO2 Adsorption and Activation for CO2 Electroreduction. , 2019, Angewandte Chemie.

[33]  Min Xu,et al.  Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion , 2019, Nature Communications.

[34]  R. Schlögl,et al.  Ni Single Atom Catalysts for CO2 Activation , 2019, Journal of the American Chemical Society.

[35]  C. Hwang,et al.  Effect of Growth Temperature during the Atomic Layer Deposition of the SrTiO3 Seed Layer on the Properties of RuO2/SrTiO3/Ru Capacitors for Dynamic Random Access Memory Applications. , 2018, ACS applied materials & interfaces.

[36]  Chuanyi Wang,et al.  Photocatalytic CO2 reduction over SrTiO3: Correlation between surface structure and activity , 2018, Applied Surface Science.

[37]  Xiaobo Chen,et al.  Efficient Dye-Sensitized Solar Cells Based on Nanoflower-like ZnO Photoelectrode , 2017, Molecules.

[38]  Tao Zhang,et al.  Photoelectrochemical devices for solar water splitting - materials and challenges. , 2017, Chemical Society reviews.

[39]  Marc Robert,et al.  Visible-light-driven methane formation from CO2 with a molecular iron catalyst , 2017, Nature.

[40]  L. Gu,et al.  Edge Epitaxy of Two-Dimensional MoSe2 and MoS2 Nanosheets on One-Dimensional Nanowires. , 2017, Journal of the American Chemical Society.

[41]  T. Klimczuk,et al.  TiO2/SrTiO3 and SrTiO3 microspheres decorated with Rh, Ru or Pt nanoparticles: Highly UV–vis responsible photoactivity and mechanism , 2017 .

[42]  Linjun Wang,et al.  Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO2–SrTiO3 Core–Shell Nanowire Photoelectrochemical System , 2017, Advanced materials.

[43]  Zhiliang Wang,et al.  Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces , 2017 .

[44]  Sonja A. Francis,et al.  Solar-Driven Reduction of 1 atm of CO2 to Formate at 10% Energy-Conversion Efficiency by Use of a TiO2-Protected III–V Tandem Photoanode in Conjunction with a Bipolar Membrane and a Pd/C Cathode , 2016 .

[45]  Maor F. Baruch,et al.  Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. , 2015, Chemical reviews.

[46]  Zhaosheng Li,et al.  Solar fuel production: Strategies and new opportunities with nanostructures , 2015 .

[47]  Longwei Yin,et al.  Tailored SrTiO3/TiO2 heterostructures for dye-sensitized solar cells with enhanced photoelectric conversion performance , 2015 .

[48]  T. Tachikawa,et al.  Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. , 2014, Angewandte Chemie.

[49]  R. Hobara,et al.  Electron-Hole Recombination Time at TiO2 Single-Crystal Surfaces: Influence of Surface Band Bending. , 2014, The journal of physical chemistry letters.

[50]  Zhong‐Sheng Wang,et al.  Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells , 2013 .

[51]  P. Schmuki,et al.  TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications , 2013 .

[52]  Z. Ristić,et al.  Growth and characterization of stable SrO-terminated SrTiO3 surfaces , 2009 .

[53]  Tae Kyu Kim,et al.  Regulating Cu atom orbital state on self-built photogate catalyst for improving HCOOH selectivity of CO2 reduction , 2023, Applied Catalysis B: Environmental.

[54]  Guohua Zhao,et al.  Boosting efficient C-N bonding toward photoelectrocatalytic urea synthesis from CO2 and nitrate via close Cu/Ti bimetallic sites , 2023, Applied Catalysis B: Environmental.

[55]  Moritz F. Kuehnel,et al.  Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode , 2019, Nature Catalysis.

[56]  Hexing Li,et al.  Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis , 2016 .

[57]  B. R. Churagulov,et al.  Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions , 2003 .