Determination methods for controller parameters of back-to-back converters in electric power grids

The paper presents a new optimization method for PI controllers of back-to-back voltage source converters using a vector control scheme to enable the control of active and reactive power transmission between two independent grids, for example, an emulator as a load or a source between the medium voltage distribution grid and a low voltage island grid. The control principle based on three phase systems in dq-components enables an independent control of active and reactive power with a simple structure using PI controllers. The presented optimization method using pole placement (PP) technique for tuning of the controllers leads to a higher degree of freedom and therefore to better results compared to the modulus optimum (MO) optimization method discussed in [1], [2]. A cascaded control model consisting of inner current and outer power/voltage control loops is being used for the optimization of the system's transient response. The mathematical modeling of the control system as well as the evaluation of the controller parameters are described in detail. A comparison of the presented optimization method for controllers with existing methods is shown by simulation results using the software PSCAD.