Sharp threshold rates for random codes

Suppose that $\mathcal{P}$ is a property that may be satisfied by a random code $C \subset \Sigma^n$. For example, for some $p \in (0,1)$, $\mathcal{P}$ might be the property that there exist three elements of $C$ that lie in some Hamming ball of radius $pn$. We say that $R^*$ is the threshold rate for $\mathcal{P}$ if a random code of rate $R^{*} + \varepsilon$ is very likely to satisfy $\mathcal{P}$, while a random code of rate $R^{*} - \varepsilon$ is very unlikely to satisfy $\mathcal{P}$. While random codes are well-studied in coding theory, even the threshold rates for relatively simple properties like the one above are not well understood. We characterize threshold rates for a rich class of properties. These properties, like the example above, are defined by the inclusion of specific sets of codewords which are also suitably "symmetric." For properties in this class, we show that the threshold rate is in fact equal to the lower bound that a simple first-moment calculation obtains. Our techniques not only pin down the threshold rate for the property $\mathcal{P}$ above, they give sharp bounds on the threshold rate for list-recovery in several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for list-recovery in general.

[1]  I. Mazin,et al.  Theory , 1934 .

[2]  J. Komlos,et al.  On the Size of Separating Systems and Families of Perfect Hash Functions , 1984 .

[3]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[4]  Simon Litsyn,et al.  A New Upper Bound on Codes Decodable into Size-2 Lists , 1999 .

[5]  Venkatesan Guruswami,et al.  Beating Fredman-Komlós for perfect k-hashing , 2019, Electron. Colloquium Comput. Complex..

[6]  Brussels,et al.  Volume 39 , 1998 .

[7]  Venkatesan Guruswami,et al.  Linear-time Codes to Correct a Maximum Possible Fraction of Errors , 2001 .

[8]  Imre Csiszár,et al.  Information Theory and Statistics: A Tutorial , 2004, Found. Trends Commun. Inf. Theory.

[9]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[10]  Venkatesan Guruswami,et al.  List Decoding of Error-Correcting Codes (Winning Thesis of the 2002 ACM Doctoral Dissertation Competition) , 2005, Lecture Notes in Computer Science.

[11]  Venkatesan Guruswami,et al.  On the List-Decodability of Random Linear Codes , 2011, IEEE Trans. Inf. Theory.

[12]  A. Rudra,et al.  Average-radius list-recovery of random linear codes: it really ties the room together , 2017, ArXiv.

[13]  Kent E. Morrison q-Exponential Families , 2004, Electron. J. Comb..

[14]  Mary Wootters,et al.  Improved List-Decodability of Random Linear Binary Codes , 2018, IEEE Transactions on Information Theory.

[15]  Jonathan Mosheiff,et al.  LDPC Codes Achieve List Decoding Capacity , 2019, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[16]  Lars-Ake Levin,et al.  Problems of Information Transmission , 1973 .

[17]  Yang Ding,et al.  On List-Decodability of Random Rank Metric Codes and Subspace Codes , 2014, IEEE Transactions on Information Theory.

[18]  J. Körner Fredman-Kolmo´s bounds and information theory , 1986 .

[19]  Chaoping Xing,et al.  Beating the Probabilistic Lower Bound on q-Perfect Hashing , 2019, Combinatorica.

[20]  Béla Bollobás,et al.  Random Graphs , 1985 .

[21]  Venkatesan Guruswami,et al.  Combinatorial Limitations of Average-Radius List-Decoding , 2012, IEEE Transactions on Information Theory.

[22]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[23]  Enkatesan G Uruswami Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes , 2008 .

[24]  Venkatesan Guruswami,et al.  Bounds for List-Decoding and List-Recovery of Random Linear Codes , 2020, IEEE Transactions on Information Theory.

[25]  Peter D. Hoff A EXPONENTIAL FAMILIES , 2013 .

[26]  Nicolas Resch Thesis Proposal List Decodable Codes: (Randomized) Constructions and Applications , 2019 .

[27]  L. Goddard Information Theory , 1962, Nature.

[28]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[29]  Thresholds versus fractional expectation-thresholds , 2019, Annals of Mathematics.

[30]  Venkatesan Guruswami,et al.  On the List-Decodability of Random Linear Codes , 2010, IEEE Transactions on Information Theory.

[31]  Zhengmin Zhang,et al.  Estimating Mutual Information Via Kolmogorov Distance , 2007, IEEE Transactions on Information Theory.

[32]  Peter Elias,et al.  Error-correcting codes for list decoding , 1991, IEEE Trans. Inf. Theory.

[33]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[34]  Venkatesan Guruswami,et al.  On the List-Decodability of Random Linear Rank-Metric Codes , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[35]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[36]  János Körner,et al.  New Bounds for Perfect Hashing via Information Theory , 1988, Eur. J. Comb..

[37]  Noga Alon,et al.  List-Decodable Zero-Rate Codes , 2017, IEEE Transactions on Information Theory.

[38]  Raphaël Clifford,et al.  ACM-SIAM Symposium on Discrete Algorithms , 2015, SODA 2015.