Nanostructure engineering by templated self-assembly of block copolymers

Self-assembling materials are the building blocks for bottom-up nanofabrication processes, but many self-assembled nanostructures contain defects and lack sufficient long-range order for certain nanotechnology applications. Here we investigate the formation of defects in a self-assembled array of spherical block-copolymer microdomains, using topographical templates to control the local self-assembly. Perfect ordered sphere arrays can form in both constant-width templates and width-modulated templates. For modulated templates, transition between configurations having a constant number of rows and configurations of stable arrays with varying numbers of rows is shown to be analogous to dislocation formation in an epitaxial thin film system. Based on the configuration transition energy and fluctuation energy, designed templates with a high tolerance for lithographical imperfections can direct precisely modulated block-copolymer nanostructures. This study provides insights into the design of hybrid systems combining top-down and bottom-up fabrication.

[1]  Turner,et al.  Equilibrium properties of a diblock copolymer lamellar phase confined between flat plates. , 1992, Physical review letters.

[2]  A. Mayes,et al.  A Free Energy Model for Confined Diblock Copolymers , 1994 .

[3]  Ludwik Leibler,et al.  Morphology and Thermodynamics of Symmetric Poly(A-block-B-block-C) Triblock Copolymers , 1995 .

[4]  H. Jaeger,et al.  Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields , 1996, Science.

[5]  L. Leibler,et al.  Order-disorder-and order-order-transitions in AB and ABC block copolymers: description by a simple model , 1996 .

[6]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[7]  A. Mayes,et al.  Observed Substrate Topography-Mediated Lateral Patterning of Diblock Copolymer Films , 1997 .

[8]  M. Matsen CYLINDER GYROID EPITAXIAL TRANSITIONS IN COMPLEX POLYMERIC LIQUIDS , 1998 .

[9]  E. Thomas,et al.  Periodic organic-organometallic microdomain structures in poly(styrene-block-ferrocenyldimethylsilane) copolymers and blends with corresponding homopolymers , 1999 .

[10]  I. Manners Poly(ferrocenylsilanes): novel organometallic plastics , 1999 .

[11]  S. Mochrie,et al.  Polymers on Nanoperiodic, Heterogeneous Surfaces , 1999 .

[12]  Joachim P. Spatz,et al.  Micellar Inorganic–Polymer Hybrid Systems—A Tool for Nanolithography , 1999 .

[13]  K. Guarini,et al.  Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.

[14]  Edwin L. Thomas,et al.  Microdomain patterns from directional eutectic solidification and epitaxy , 2000, Nature.

[15]  Joy Cheng,et al.  Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography , 2001 .

[16]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[17]  A. Mayes,et al.  Block copolymer thin films : Physics and applications , 2001 .

[18]  C. Ross Patterned Magnetic Recording Media , 2001 .

[19]  M. Matsen Cylinder↔sphere epitaxial transitions in block copolymer melts , 2001 .

[20]  K. Guarini,et al.  Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication , 2001 .

[21]  E. Thomas,et al.  Poly(ferrocenyldimethylsilanes) for Reactive Ion Etch Barrier Applications , 2001 .

[22]  E. Kramer,et al.  Graphoepitaxy of Spherical Domain Block Copolymer Films , 2001 .

[23]  Koji Asakawa,et al.  2.5-inch disk patterned media prepared by an artificially assisted self-assembling method , 2002 .

[24]  E. Kumacheva,et al.  Colloid Crystal Growth on Mesoscopically Patterned Surfaces: Effect of Confinement , 2002 .

[25]  Henry I. Smith,et al.  Fabrication of nanostructures with long-range order using block copolymer lithography , 2002 .

[26]  Confinement of columnar diblock copolymers: Simulations, theory and applications , 2002 .

[27]  J. Pople,et al.  Thermodynamic Interactions in Organometallic Block Copolymers: Poly(styrene-block-ferrocenyldimethylsilane) , 2002 .

[28]  Rachel A. Segalman,et al.  Effects of lateral confinement on order in spherical domain block copolymer thin films , 2003 .

[29]  C. Ross,et al.  Templated Self‐Assembly of Block Copolymers: Effect of Substrate Topography , 2003 .

[30]  Y. Zhang,et al.  Low voltage, scalable nanocrystal flash memory fabricated by templated self assembly , 2003, IEEE International Electron Devices Meeting 2003.

[31]  Two-dimensional colloid crystals obtained by coupling of flow and confinement. , 2003, Physical review letters.

[32]  Alexander Hexemer,et al.  Ordering and Melting of Block Copolymer Spherical Domains in 2 and 3 Dimensions , 2003 .

[33]  P. Nealey,et al.  Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates , 2003, Nature.