Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin

[1]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[2]  Rick L. Stevens,et al.  A communal catalogue reveals Earth’s multiscale microbial diversity , 2017, Nature.

[3]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .

[4]  A. Uitterlinden,et al.  Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA , 1993, Applied and environmental microbiology.

[5]  Philip D. Blood,et al.  Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software , 2017, Nature Methods.

[6]  Ben Nichols,et al.  Distributed under Creative Commons Cc-by 4.0 Vsearch: a Versatile Open Source Tool for Metagenomics , 2022 .

[7]  William A. Walters,et al.  Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms , 2012, The ISME Journal.

[8]  Jordan A. Fish,et al.  Ecological Patterns of nifH Genes in Four Terrestrial Climatic Zones Explored with Targeted Metagenomics Using FrameBot, a New Informatics Tool , 2013, mBio.

[9]  Gilles Louppe,et al.  Independent consultant , 2013 .

[10]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[11]  F. Bushman,et al.  QIIME allows integration and analysis of high-throughput community sequencing data. Nat. Meth. , 2010 .

[12]  Tzu-Tsung Wong,et al.  Naïve Bayesian Classifiers with Multinomial Models for rRNA Taxonomic Assignment , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[13]  Nicholas A. Bokulich,et al.  Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing , 2012, Nature Methods.

[14]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[15]  Qiong Wang,et al.  Using the RDP Classifier to Predict Taxonomic Novelty and Reduce the Search Space for Finding Novel Organisms , 2012, PloS one.

[16]  Dan Knights,et al.  Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies , 2016, Nature Biotechnology.

[17]  Eric P. Nawrocki,et al.  An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea , 2011, The ISME Journal.

[18]  William A. Walters,et al.  Accurate Estimation of Fungal Diversity and Abundance through Improved Lineage-Specific Primers Optimized for Illumina Amplicon Sequencing , 2016, Applied and Environmental Microbiology.

[19]  F. Bushman,et al.  Short pyrosequencing reads suffice for accurate microbial community analysis , 2007, Nucleic acids research.

[20]  H. Friberg,et al.  New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities. , 2012, FEMS microbiology ecology.

[21]  Katherine H. Huang,et al.  A framework for human microbiome research , 2012, Nature.

[22]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[23]  S. Goodison,et al.  16S ribosomal DNA amplification for phylogenetic study , 1991, Journal of bacteriology.

[24]  Nicholas A. Bokulich,et al.  Improved Selection of Internal Transcribed Spacer-Specific Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities , 2013, Applied and Environmental Microbiology.

[25]  Charis M. Thompson Collect reliable data on embryo selection , 2017, Nature.

[26]  Marcus J. Claesson,et al.  Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions , 2010, Nucleic acids research.

[27]  Daniel H. Huson,et al.  CREST – Classification Resources for Environmental Sequence Tags , 2012, PloS one.

[28]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[29]  Vineet K. Sharma,et al.  16S Classifier: A Tool for Fast and Accurate Taxonomic Classification of 16S rRNA Hypervariable Regions in Metagenomic Datasets , 2015, PloS one.

[30]  Michael Weiss,et al.  Towards a unified paradigm for sequence‐based identification of fungi , 2013, Molecular ecology.

[31]  Dieter M. Tourlousse,et al.  Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing , 2016, Nucleic acids research.

[32]  P. Turnbaugh,et al.  Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome , 2013, Cell.

[33]  Robert C. Edgar,et al.  SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences , 2016, bioRxiv.

[34]  Hélène Touzet,et al.  SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data , 2012, Bioinform..

[35]  Ben Nichols,et al.  VSEARCH: a versatile open source tool for , 2016 .

[36]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[37]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[38]  C. Quince,et al.  Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform , 2015, Nucleic acids research.

[39]  P. Greenfield,et al.  Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences , 2016, Mycologia.

[40]  Nicholas A. Bokulich,et al.  mockrobiota: a Public Resource for Microbiome Bioinformatics Benchmarking , 2016, mSystems.

[41]  R. Knight,et al.  Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers , 2008, Nucleic acids research.

[42]  Rob Knight,et al.  Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences , 2012, The ISME Journal.