Performance-based regularization in mean-CVaR portfolio optimization

We introduce performance-based regularization (PBR), a new approach to addressing estimation risk in data-driven optimization, to mean-CVaR portfolio optimization. We assume the available log-return data is iid, and detail the approach for two cases: nonparametric and parametric (the log-return distribution belongs in the elliptical family). The nonparametric PBR method penalizes portfolios with large variability in mean and CVaR estimations. The parametric PBR method solves the empirical Markowitz problem instead of the empirical mean-CVaR problem, as the solutions of the Markowitz and mean-CVaR problems are equivalent when the log-return distribution is elliptical. We derive the asymptotic behavior of the nonparametric PBR solution, which leads to insight into the effect of penalization, and justification of the parametric PBR method. We also show via simulations that the PBR methods produce efficient frontiers that are, on average, closer to the population efficient frontier than the empirical approach to the mean-CVaR problem, with less variability.

[1]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[2]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[3]  W. CooperW.,et al.  Cost Horizons and Certainty Equivalents , 1958 .

[4]  Masao Fukushima,et al.  Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management , 2009, Oper. Res..

[5]  Klaus Nordhausen,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .

[6]  Maria Grazia Speranza,et al.  Conditional value at risk and related linear programming models for portfolio optimization , 2007, Ann. Oper. Res..

[7]  D. Pollard Convergence of stochastic processes , 1984 .

[8]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[9]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[10]  E. Giné,et al.  Limit Theorems for $U$-Processes , 1993 .

[11]  Helmut Mausser,et al.  Credit risk optimization with Conditional Value-at-Risk criterion , 2001, Math. Program..

[12]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[13]  Enrico G. De Giorgi,et al.  A Note on Portfolio Selections under Various Risk Measures , 2002 .

[14]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[15]  Peter A. Frost,et al.  An Empirical Bayes Approach to Efficient Portfolio Selection , 1986, Journal of Financial and Quantitative Analysis.

[16]  V. K. Chopra Improving Optimization , 1993 .

[17]  Andrew E. B. Lim,et al.  Conditional value-at-risk in portfolio optimization: Coherent but fragile , 2011, Oper. Res. Lett..

[18]  S. Chen Nonparametric Estimation of Expected Shortfall , 2007 .

[19]  G. Frankfurter,et al.  Portfolio Selection: The Effects of Uncertain Means, Variances, and Covariances , 1971, Journal of Financial and Quantitative Analysis.

[20]  Noureddine El Karoui,et al.  High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: Risk underestimation , 2010, 1211.2917.

[21]  A. Charnes,et al.  Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil , 1958 .

[22]  E B LimAndrew,et al.  Conditional value-at-risk in portfolio optimization , 2011 .

[23]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[24]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[25]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[26]  Akiko Takeda,et al.  On the role of norm constraints in portfolio selection , 2011, Comput. Manag. Sci..

[27]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[28]  Mark Broadie,et al.  Computing efficient frontiers using estimated parameters , 1993, Ann. Oper. Res..

[29]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[30]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[31]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.

[32]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[33]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[34]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[36]  T. Coleman,et al.  Minimizing CVaR and VaR for a portfolio of derivatives , 2006 .

[37]  M. Best,et al.  On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .

[38]  P. Frost,et al.  For better performance , 1988 .

[39]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[40]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[41]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .