Biarc approximation of NURBS curves

An algorithm for approximating arbitrary NURBS curves with biarcs is presented. The main idea is to approximate the NURBS curve with a polygon, and then to approximate the polygon with biarcs to within the required tolerance. The method uses a parametric formulation of biarcs appropriate in geometric design using parametric curves. The method is most useful in numerical control to drive the cutter along straight line or circular paths.

[1]  A. Requicha,et al.  Piecewise-circular curves for geometric modeling , 1987 .

[2]  Desmond J. Walton,et al.  Curve fitting with arc splines for NC toolpath generation , 1994, Comput. Aided Des..

[3]  Jens Schönherr,et al.  Smooth biarc curves , 1993, Comput. Aided Des..

[4]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Robert P. Markot,et al.  Surface algorithms using bounds on derivatives , 1986, Comput. Aided Geom. Des..

[6]  S. Y. Wong,et al.  An optimization approach for biarc curve-fitting of B-spline curves , 1996, Comput. Aided Des..

[7]  Frank S.-H. Chuang,et al.  One-sided arc approximation of B-spline curves for interference-free offsetting , 1999, Comput. Aided Des..

[8]  Shi-Min Hu,et al.  A note on approximation of discrete data by G1 arc splines , 1999, Comput. Aided Des..

[9]  Shi-Min Hu,et al.  Bisection algorithms for approximating quadratic Bézier curves by G1 arc splines , 2000, Comput. Aided Des..

[10]  Yan Li,et al.  Optimal circular arc interpolation for NC tool path generation in curve contour manufacturing , 1997, Comput. Aided Des..

[11]  Dereck S. Meek,et al.  Approximating quadratic NURBS curves by arc splines , 1993, Comput. Aided Des..

[12]  Barbara Putz,et al.  Approximation of spirals by piecewise curves of fewest circular arc segments , 1984 .

[13]  Dereck S. Meek,et al.  Approximation of discrete data by G1 arc splines , 1992, Comput. Aided Des..

[14]  Les A. Piegl,et al.  Curve fitting algorithm for rough cutting , 1986 .

[15]  P. Bézier Numerical control : mathematics and applications , 1972 .

[16]  Les A. Piegl,et al.  Data Approximation Using Biarcs , 2002, Engineering with Computers.

[17]  R. R. Martin,et al.  Differential geometry applied to curve and surface design , 1988 .

[18]  Xunnian Yang,et al.  Approximating NURBS curves by arc splines , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[19]  Young Joon Ahn,et al.  G1 arc spline approximation of quadratic Bézier curves , 1998, Comput. Aided Des..

[20]  B. Su,et al.  Computational geometry: curve and surface modeling , 1989 .

[21]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[22]  D. B. Parkinson,et al.  Optimal biarc-curve fitting , 1991, Comput. Aided Des..

[23]  D. Walton,et al.  Approximating smooth planar curves by arc splines , 1995 .