Wireless multichannel acquisition of neuropotentials

Implantable brain-machine interfaces for disease diagnosis and motor prostheses control require low-power acquisition of neuropotentials spanning a wide range of amplitudes and frequencies. Here, we present a 16-channel VLSI neuropotential acquisition system with tunable gain and bandwidth, and variable rate digital transmission over an inductive link which further supplies power. The neuropotential interface chip is composed of an amplifier, incremental ADC and bit-serial readout circuitry. The front-end amplifier has a midband gain of 40 dB and offers NEF of less than 3 for all bandwidth settings. It also features adjustable low-frequency cut-off from 0.2 to 94 Hz, and independent high-frequency cut-off from 140 Hz to 8.2 kHz. The Gm-C incremental DeltaSigma ADC offers digital gain up to 4096 and 8-12 bits resolution. The interface circuit is powered by a telemetry chip which harvests power through inductive coupling from a 4 MHz link, provides a 1 MHz clock for ADC operation and transmits the bit-serial data of the neurpotential interface across 4 cm at up to 32 kbps with a BER less than 10-5. Experimental EEG recordings using the neuropotential interface and wireless module are presented.

[1]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[2]  Pedram Mohseni,et al.  A fully integrated neural recording amplifier with DC input stabilization , 2004, IEEE Transactions on Biomedical Engineering.

[3]  Refet Firat Yazicioglu,et al.  A 200 $\mu$ W Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems , 2008, IEEE Journal of Solid-State Circuits.

[4]  Refet Firat Yazicioglu,et al.  A 200μW Eight-Channel Acquisition ASIC for Ambulatory EEG Systems , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[5]  Moo Sung Chae,et al.  A 128-Channel 6mW Wireless Neural Recording IC with On-the-Fly Spike Sorting and UWB Tansmitter , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[6]  Ran Ginosar,et al.  An Integrated System for Multichannel Neuronal Recording With Spike/LFP Separation, Integrated A/D Conversion and Threshold Detection , 2007, IEEE Trans. Biomed. Eng..

[7]  Gregory Molnar,et al.  An 8μW Heterodyning Chopper Amplifier for Direct Extraction of 2μVrms Neuronal Biomarkers , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[8]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[9]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[10]  Kartikeya Murari,et al.  VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[11]  Gert Cauwenberghs,et al.  Power harvesting and telemetry in CMOS for implanted devices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.